1. bookVolume 71 (2021): Edizione 2 (June 2021)
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Piperine: Chemical, biological and nanotechnological applications

Pubblicato online: 04 Nov 2020
Volume & Edizione: Volume 71 (2021) - Edizione 2 (June 2021)
Pagine: 185 - 213
Accettato: 31 May 2020
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno

1. S. G. Acharya, A. H. Momin and A. V Gajjar, Review of piperine as a bio-enhancer, Am. J. Pharm. Tech. Res. 2 (2012) 32–44.Search in Google Scholar

2. J.-J. Lu, J.-L. Bao, X.-P. Chen, M. Huang and Y.-T. Wang, Alkaloids isolated from natural herbs as the anticancer agents, Evidence-based Complement. Altern. Med.2012 (2012) Article ID 485042 (12 pages); https://doi.org/10.1155/2012/48504210.1155/2012/485042Search in Google Scholar

3. F. Borrelli, R. Capasso, A. Pinto and A. A. Izzo, Inhibitory effect of ginger (Zingiber officinale) on rat ileal motility in vitro, Life Sci.74 (2004) 2889–2896; https://doi.org/10.1016/j.lfs.2003.10.02310.1016/j.lfs.2003.10.023Search in Google Scholar

4. W. Tabuneng, H. Bando and T. Amiya, Studies on the constituents of the crude drug “Piperis Longi Fructus.” On the alkaloids of fruits of Piper longum L., Chem. Pharm. Bull.31 (1983) 3562–3565; https://doi.org/10.1248/cpb.31.356210.1248/cpb.31.3562Search in Google Scholar

5. M. Ahmed, M. W. Rahman, M. T. Rahman and C. F. Hossain, Analgesic principle from the bark of Careya arborea, Pharmazie57 (2002) 698–701.Search in Google Scholar

6. B. Chopra, A. K. Dhingra, R. P. Kapoor and D. N. Prasad, Piperine and its various physicochemical and biological aspects: a review, Open Chem. J.3 (2016) 75–96; https://doi.org/10.2174/187484220160301007510.2174/1874842201603010075Search in Google Scholar

7. G. P. Rédei, Black Pepper (Piper nigrum), in: Encyclopedia of Genetics, Genomics, Proteomics, and Informatics (Ed. G. P. Rédei), 3rd ed., Springer, Dordrecht 2008, pp. 220–220.10.1007/978-1-4020-6754-9_1875Search in Google Scholar

8. K. Vasavirama and M. Upender, Piperine: A valuable alkaloid from piper species, Int. J. Pharm. Pharm. Sci.6 (2014) 34–38.Search in Google Scholar

9. B. G. Bhat and N. Chandrasekhara, Studies on the metabolism of piperine: absorption, tissue distribution and excretion of urinary conjugates in rats, Toxicology40 (1986) 83–92; https://doi.org/10.1016/0300-483X(86)90048-X10.1016/0300-483X(86)90048-XSearch in Google Scholar

10. D. Suresh and K. Srinivasan, Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats, Indian J. Med. Res.131 (2010) 682–691.Search in Google Scholar

11. H. Liu, R. Luo, X. Chen, J. Liu, Y. Bi, L. Zheng and X. Wu, Tissue distribution profiles of three antiparkinsonian alkaloids from Piper longum L. in rats determined by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B928 (2013) 78–82; https://doi.org/10.1016/j.jchromb.2013.03.02110.1016/j.jchromb.2013.03.021Search in Google Scholar

12. S. Bajad, M. Coumar, R. Khajuria, O. P. Suri and K. L. Bedi, Characterization of a new rat urinary metabolite of piperine by LC/NMR/MS studies, Eur. J. Pharm. Sci.19 (2003) 413–421; https://doi.org/10.1016/S0928-0987(03)00143-X10.1016/S0928-0987(03)00143-XSearch in Google Scholar

13. Z. Shang, W. Cai, Y. Cao, F. Wang, Z. Wang, J. Lu and J. Zhang, An integrated strategy for rapid discovery and identification of the sequential piperine metabolites in rats using ultra high-performance liquid chromatography/high resolution mass spectrometery, J. Pharm. Biomed. Anal.146 (2017) 387–401; https://doi.org/10.1016/j.jpba.2017.09.01210.1016/j.jpba.2017.09.01228918329Search in Google Scholar

14. X. Di, X. Wang, X. Di and Y. Liu, Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats, J. Pharm. Biomed. Anal.115 (2015) 144–149; https://doi.org/10.1016/j.jpba.2015.06.02710.1016/j.jpba.2015.06.02726201645Search in Google Scholar

15. R. R. Dalvi and P. S. Dalvi, Differences in the effects of piperine and piperonyl butoxide on hepatic drug-metabolizing enzyme system in rats, Drug Chem. Toxicol.14 (1991) 219–229; https://doi.org/10.3109/0148054910901787810.3109/01480549109017878Search in Google Scholar

16. R. K. Reen, D. S. Jamwal, S. C. Taneja, J. L. Koul, R. K. Dubey, F. J. Wiebel and J. Singh, Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine, Biochem. Pharmacol.46 (1993) 229–238; https://doi.org/10.1016/0006-2952(93)90408-O10.1016/0006-2952(93)90408-OSearch in Google Scholar

17. C. K. Atal, R. K. Dubey and J. Singh, Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism, J. Pharmacol. Exp. Ther.232 (1985) 258–262.Search in Google Scholar

18. B. Burchell, D. W. Nebert, D. R. Nelson, K. W. Bock, T. Iyanagi, P. L. M. Jansen, D. Lancet, G. J. Mulder, J. R. Chowdhury and G. Siest, The UDP glucuronosyltransferase gene super family: suggested nomenclature based on evolutionary divergence, DNA Cell Biol.10 (1991) 487–494; https://doi.org/10.1089/dna.1991.10.48710.1089/dna.1991.10.4871909870Search in Google Scholar

19. G. B. Dudhatra, S. K. Mody, M. M. Awale, H. B. Patel, C. M. Modi, A. Kumar, D. R. Kamani and B. N. Chauhan, A comprehensive review on pharmacotherapeutics of herbal bioenhancers, Sci. World J.2012 (2012) Article ID 637953 (33 pages); https://doi.org/10.1100/2012/63795310.1100/2012/637953345826623028251Search in Google Scholar

20. R. K. Bhardwaj, H. Glaeser, L. Becquemont, U. Klotz, S. K. Gupta and M. F. Fromm, Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4, J. Pharmacol. Exp. Ther.302 (2002) 645–650; https://doi.org/10.1124/jpet.102.03472810.1124/jpet.102.03472812130727Search in Google Scholar

21. P. Haris, V. Mary, M. Haridas and C. Sudarsanakumar, Energetics, thermodynamics, and molecular recognition of piperine with DNA, J. Chem. Inf. Model.55 (2015) 2644–2656; https://doi.org/10.1021/acs.jcim.5b0051410.1021/acs.jcim.5b0051426523930Search in Google Scholar

22. H. G. Kim, E. H. Han, W.-S. Jang, J. H. Choi, T. Khanal, B. H. Park, T. P. Tran, Y. C. Chung and H. G. Jeong, Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages, Food Chem. Toxicol.50 (2012) 2342–2348; https://doi.org/10.1016/j.fct.2012.04.02410.1016/j.fct.2012.04.02422542552Search in Google Scholar

23. R. K. S. Dogra, S. Khanna and R. Shanker, Immunotoxicological effects of piperine in mice, Toxicology196 (2004) 229–236; https://doi.org/10.1016/j.tox.2003.10.00610.1016/j.tox.2003.10.00615036749Search in Google Scholar

24. C. P. O. Aguiar, D. C. F. Lopes and R. S. Borges, Influence of piperidine ring on stability and reactivity of piperine, Chem. Data Collect.17 (2018) 138–142; https://doi.org/10.1016/j.cdc.2018.08.01010.1016/j.cdc.2018.08.010Search in Google Scholar

25. A. Kumar, I. A. Khan, S. Koul, J. L. Koul, S. C. Taneja, I. Ali, F. Ali, S. Sharma, Z. M. Mirza, M. Kumar, P. L. Sangwan, P. Gupta, N. Thota and G. N. Qazi, Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus, J. Antimicrob. Chemother.61 (2008) 1270–1276; https://doi.org/10.1093/jac/dkn08810.1093/jac/dkn08818334493Search in Google Scholar

26. K. Poole, Efflux-mediated multiresistance in Gram-negative bacteria, Clin. Microbiol. Infect.10 (2004) 12–26; https://doi.org/10.1111/j.1469-0691.2004.00763.x10.1111/j.1469-0691.2004.00763.xSearch in Google Scholar

27. T. Toyoda, L. Shi, S. Takasu, Y.-M. Cho, Y. Kiriyama, A. Nishikawa, K. Ogawa, M. Tatematsu and T. Tsukamoto, Antiinflammatory effects of capsaicin and piperine on Helicobacter pylori-induced chronic gastritis in Mongolian gerbils, Helicobacter21 (2016) 131–42; https://doi.org/10.1111/hel.1224310.1111/hel.12243Search in Google Scholar

28. T. Tanaka, Role of apoptosis in the chemoprevention of cancer, J. Exp. Clin. Med.5 (2013) 89–91; https://doi.org/10.1016/j.jecm.2013.04.00110.1016/j.jecm.2013.04.001Search in Google Scholar

29. L. Lai, Q. Fu, Y. Liu, K. Jiang, Q. Guo, Q. Chen, B. Yan, Q. Wang and J. Shen, Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model, Acta Pharmacol. Sin.33 (2012) 523–530; https://doi.org/10.1038/aps.2011.20910.1038/aps.2011.209Search in Google Scholar

30. G.-Y. Liou and P. Storz, Reactive oxygen species in cancer, Free Radic. Res.44 (2010) 479–496; https://doi.org/10.3109/1071576100366755410.3109/10715761003667554Search in Google Scholar

31. G. H. Williams and K. Stoeber, The cell cycle and cancer, J. Pathol.226 (2012) 352–364; https://doi.org/10.1002/path.302210.1002/path.3022Search in Google Scholar

32. R. A. Sharma, A. L. Harris, A. G. Dalgleish, W. P. Steward and K. J. O’Byrne, Angiogenesis as a biomarker and target in cancer chemoprevention, Lancet Oncol.2 (2001) 726–732; https://doi.org/10.1016/S1470-2045(01)00586-110.1016/S1470-2045(01)00586-1Search in Google Scholar

33. S. V. Ambudkar, C. Kimchi-Sarfaty, Z. E. Sauna and M. M. Gottesman, P-glycoprotein: from genomics to mechanism, Oncogene22 (2003) 7468–7485; https://doi.org/10.1038/sj.onc.120694810.1038/sj.onc.120694814576852Search in Google Scholar

34. S. Han, H. Liu, L. Yang, L. Cui and Y. Xu, Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB, Biomed. Pharmacother.96 (2017) 1403–1410; https://doi.org/10.1016/j.biopha.2017.11.02210.1016/j.biopha.2017.11.02229169726Search in Google Scholar

35. U. H. Park, H. S. Jeong, E. Y. Jo, T. Park, S. K. Yoon, E. J. Kim, J. C. Jeong and S. J. Um, Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPAR-g activity in 3T3-L1 cells, J. Agric. Food Chem.60 (2012) 3853–3860; https://doi.org/10.1021/jf204514a10.1021/jf204514a22463744Search in Google Scholar

36. C. Kharbanda, M. S. Alam, H. Hamid, K. Javed, S. Bano, Y. Ali, A. Dhulap, P. Alam and M. A. Q. Pasha, Novel piperine derivatives with antidiabetic effect as PPAR-g agonists, Chem. Biol. Drug Des.88 (2016) 354–362; https://doi.org/10.1111/cbdd.1276010.1111/cbdd.12760Search in Google Scholar

37. T. Miyako, J. Ji-Guang, L. Yun-Fei and N. Sosogu, Effects of piperine on the motility of the isolated guinea-pig ileum: comparison with capsaicin, Eur. J. Pharmacol.186 (1990) 71–77; https://doi.org/10.1016/0014-2999(90)94061-210.1016/0014-2999(90)94061-2Search in Google Scholar

38. R. Capasso, A. A. Izzo, F. Borrelli, A. Russo, L. Sautebin, A. Pinto, F. Capasso and N. Mascolo, Effect of piperine, the active ingredient of black pepper, on intestinal secretion in mice, Life Sci.71 (2002) 2311–2317; https://doi.org/10.1016/S0024-3205(02)02019-210.1016/S0024-3205(02)02019-2Search in Google Scholar

39. F. N. McNamara, A. Randall and M. J. Gunthorpe, Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1), Br. J. Pharmacol.144 (2005) 781–790; https://doi.org/10.1038/sj.bjp.070604010.1038/sj.bjp.0706040157605815685214Search in Google Scholar

40. S. I. H. Taqvi, A. J. Shah and A. H. Gilani, Insight into the possible mechanism of antidiarrheal and antispasmodic activities of piperine, Pharm. Biol.47 (2009) 660–664; https://doi.org/10.1080/1388020090291835210.1080/13880200902918352Search in Google Scholar

41. T. M. Abegaz, A. Shehab, E. A. Gebreyohannes, A. S. Bhagavathula and A. A. Elnour, Nonadherence to antihypertensive drugs: A systematic review and meta-analysis, Medicine (Baltimore) 96 (2017) e5641; https://doi.org/10.1097/MD.000000000000564110.1097/MD.0000000000005641528794428121920Search in Google Scholar

42. S. Booranasubkajorn, S. Huabprasert, J. Wattanarangsan, P. Chotitham, P. Jutasompakorn, T. Laohapand, P. Akarasereenont and P. Tripatara, Vasculoprotective and vasodilatation effects of herbal formula (Sahatsatara) and piperine in spontaneously hypertensive rats, Phytomedicine24 (2017) 148–156; https://doi.org/10.1016/j.phymed.2016.11.01310.1016/j.phymed.2016.11.01328160856Search in Google Scholar

43. A. Azab, A. Nassar and A. N. Azab, Anti-inflammatory activity of natural products, Molecules21 (2016) Article ID 1321 (19 pages); https://doi.org/10.3390/molecules2110132110.3390/molecules21101321627414627706084Search in Google Scholar

44. L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang and L. Zhao, Inflammatory responses and inflammation-associated diseases in organs, Oncotarget9 (2018) 7204–7218; https://doi.org/10.18632/oncotarget.2320810.18632/oncotarget.23208580554829467962Search in Google Scholar

45. D. Artis and H. Spits, The biology of innate lymphoid cells, Nature517 (2015) 293–301; https://doi.org/10.1038/nature1418910.1038/nature1418925592534Search in Google Scholar

46. A. A. Elkady and S. S. Tawfik, Anti-inflammatory role of piperine against rat lung tissue damage induced by gamma-rays, Int. J. Radiat. Res.16 (2018) 75–84; https://doi.org/10.18869/acadpub.ijrr.16.1.75Search in Google Scholar

47. T. Zakerali and S. Shahbazi, Rational druggability investigation toward selection of lead molecules: Impact of the commonly used spices on inflammatory diseases, Assay Drug Dev. Technol.16 (2018) 397–407; https://doi.org/10.1089/adt.2018.85310.1089/adt.2018.853Search in Google Scholar

48. M. E. Embuscado, Spices and herbs: Natural sources of antioxidants – A mini review, J. Funct. Foods. 18 (2015) 811–819; https://doi.org/10.1016/j.jff.2015.03.00510.1016/j.jff.2015.03.005Search in Google Scholar

49. H. Sies, Oxidative stress, Stress. Physiol. Biochem. Pathol.3 (2019) 153–163; https://doi.org/10.1016/B978-0-12-813146-6.00013-810.1016/B978-0-12-813146-6.00013-8Search in Google Scholar

50. R. S. Vijayakumar, D. Surya and N. Nalini, Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress, Redox Rep.9 (2004) 105–110; https://doi.org/10.1179/13510000422500474210.1179/135100004225004742Search in Google Scholar

51. S. Kappagoda, U. Singh and B. G. Blackburn, Antiparasitic therapy, Mayo Clin. Proc.86 (2011) 561–583; https://doi.org/10.4065/mcp.2011.020310.4065/mcp.2011.0203Search in Google Scholar

52. L. Freire-De-Lima, T. S. Ribeiro, G. M. Rocha, B. A. Brandão, A. Romeiro, L. Mendonça-Previato, J. O. Previato, M. E. F. De Lima, T. M. U. De Carvalho and N. Heise, The toxic effects of piperine against Trypanosoma cruzi: Ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms, Parasitol. Res.102 (2008) 1059–1067; https://doi.org/10.1007/s00436-008-0876-910.1007/s00436-008-0876-9Search in Google Scholar

53. F. M. Vieira-Araújo, F. C. Macedo Rondon, Í. G. Pinto Vieira, F. N. Pereira Mendes, J. C. Carneiro de Freitas and S. Maia de Morais, Sinergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum, Exp. Parasitol.188 (2018) 79–82; https://doi.org/10.1016/j.exppara.2018.04.00110.1016/j.exppara.2018.04.001Search in Google Scholar

54. A. Kumar, R. P. Raman, K. Kumar, P. K. Pandey, V. Kumar, S. Mohanty and S. Kumar, Antiparasitic efficacy of piperine against Argulus spp. on Carassius auratus (Linn. 1758): In vitro and in vivo study, Parasitol. Res.111 (2012) 2071–2076; https://doi.org/10.1007/s00436-012-3054-z10.1007/s00436-012-3054-zSearch in Google Scholar

55. M. Primorac, D. Sekulovic and S. Antonic, In vitro determination of the spermicidal activity of plant saponins, Pharmazie40 (1985) 585.Search in Google Scholar

56. K. Chakrabarti, S. Pal and A. K. Bhattacharyya, Sperm immobilization activity of Allium sativum L. and other plant extracts, Asian J. Androl.5 (2003) 131–135.Search in Google Scholar

57. B. Khillare and T. G. Shrivastav, Spermicidal activity of Azadirachta indica (neem) leaf extract, Contraception68 (2003) 225–229; https://doi.org/10.1016/S0010-7824(03)00165-310.1016/S0010-7824(03)00165-3Search in Google Scholar

58. N. K. Lohiya, L. K. Kothari, B. Manivannan, P. K. Mishra and N. Pathak, Human sperm immobilization effect of Carica papaya seed extracts: an in vitro study, Asian J. Androl.2 (2000) 103–109.Search in Google Scholar

59. D. Paul, S. Bera, D. Jana, R. Maiti and D. Ghosh, In vitro determination of the contraceptive spermicidal activity of a composite extract of Achyranthes aspera and Stephania hernandifolia on human semen, Contraception73 (2006) 284–288; https://doi.org/10.1016/j.contraception.2005.07.01410.1016/j.contraception.2005.07.01416472572Search in Google Scholar

60. K. Souad, S. Ali, A. Mounir and T. M. Mounir, Spermicidal activity of extract from Cestrum parqui, Contraception75 (2007) 152–156; https://doi.org/10.1016/j.contraception.2006.10.00610.1016/j.contraception.2006.10.006Search in Google Scholar

61. G. Chinta and L. Periyasamy, Reversible anti-spermatogenic effect of piperine on epididymis and seminal vesicles of albino rats, Drug Res. (Stuttgart) 66 (2016) 420–426; https://doi.org/10.1055/s-0042-10818610.1055/s-0042-108186Search in Google Scholar

62. E. Madrigal-Santillán, E. Madrigal-Bujaidar, I. Álvarez-González, M. T. Sumaya-Martínez, J. Gutiérrez-Salinas, M. Bautista, Á. Morales-González, M. G.-L. y González-Rubio, J. L. Aguilar-Faisal and J. A. Morales-González, Review of natural products with hepatoprotective effects, World J. Gastroenterol.20 (2014) 14787–14804; https://doi.org/10.3748/wjg.v20.i40.1478710.3748/wjg.v20.i40.14787Search in Google Scholar

63. D. Rathee, A. Kamboj and S. Sidhu, Augmentation of hepatoprotective potential of Aegle marmelos in combination with piperine in carbon tetrachloride model in wistar rats, Chem. Cent. J.12 (2018) Article ID 94 (13 pages); https://doi.org/10.1186/s13065-018-0463-910.1186/s13065-018-0463-9Search in Google Scholar

64. E. P. Sabina, A. D. H. Souriyan, D. Jackline and M. K. Rasool, Piperine, an active ingredient of black pepper attenuates acetaminophen–induced hepatotoxicity in mice, Asian Pac. J. Trop. Med.3 (2010) 971–976; https://doi.org/10.1016/S1995-7645(11)60011-410.1016/S1995-7645(11)60011-4Search in Google Scholar

65. A. Ghosh, N. Chowdhury and G. Chandra, Plant extracts as potential mosquito larvicides, Indian J. Med. Res.135 (2012) 581–598.Search in Google Scholar

66. R. Pavela, Essential oils for the development of eco-friendly mosquito larvicides: A review, Ind. Crops Prod.76 (2015) 174–187; https://doi.org/10.1016/j.indcrop.2015.06.05010.1016/j.indcrop.2015.06.050Search in Google Scholar

67. M. Samuel, S. V. Oliver, M. Coetzee and B. D. Brooke, The larvicidal effects of black pepper (Piper nigrum L.) and piperine against insecticide resistant and susceptible strains of Anopheles malaria vector mosquitoes, Parasite Vector. 9 (2016) Article ID 238 (9 pages); https://doi.org/10.1186/s13071-016-1521-610.1186/s13071-016-1521-6484718127117913Search in Google Scholar

68. C. W. Olanow, The pathogenesis of cell death in Parkinson’s disease – 2007, Mov. Disord.22 (2007) S335–S342; https://doi.org/10.1002/mds.2167510.1002/mds.2167518175394Search in Google Scholar

69. S. Singh and P. Kumar, Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats, Inflammopharmacology25 (2017) 69–79; https://doi.org/10.1007/s10787-016-0297-910.1007/s10787-016-0297-927853890Search in Google Scholar

70. P. Rinwa and A. Kumar, Quercetin along with piperine prevents cognitive dysfunction, oxidative stress and neuro-inflammation associated with mouse model of chronic unpredictable stress, Arch. Pharm. Res.40 (2017) 1166–1175; https://doi.org/10.1007/s12272-013-0205-410.1007/s12272-013-0205-423856969Search in Google Scholar

71. J. Liu, M. Chen, X. Wang, Y. Wang, C. Duan, G. Gao, L. Lu, X. Wu, X. Wang and H. Yang, Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson’s disease model, Oncotarget7 (2016) 60823–60843; https://doi.org/10.18632/oncotarget.1166110.18632/oncotarget.11661530861927572322Search in Google Scholar

72. H. Wang, J. Liu, G. Gao, X. Wu, X. Wang and H. Yang, Protection effect of piperine and piper-longuminine from Piper longum L. alkaloids against rotenone-induced neuronal injury, Brain Res.1639 (2016) 214–227; https://doi.org/10.1016/j.brainres.2015.07.02910.1016/j.brainres.2015.07.02926232071Search in Google Scholar

73. Y. Bi, P.-C. Qu, Q.-S. Wang, L. Zheng, H.-L. Liu, R. Luo, X.-Q. Chen, Y.-Y. Ba, X. Wu and H. Yang, Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson’s disease, Pharm. Biol.53 (2015) 1516–1524; https://doi.org/10.3109/13880209.2014.99183510.3109/13880209.2014.99183525857256Search in Google Scholar

74. W. Yang, Y. H. Chen, H. Liu and H. D. Qu, Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model, Int. J. Mol. Med.36 (2015) 1369–1376; https://doi.org/10.3892/ijmm.2015.235610.3892/ijmm.2015.235626648012Search in Google Scholar

75. G. Coppola, A. Piccorossi, F. F. Operto and A. Verrotti, Anticonvulsant drugs for generalized tonic-clonic epilepsy, Expert Opin. Pharmacother.18 (2017) 925–936; https://doi.org/10.1080/14656566.2017.132849910.1080/14656566.2017.132849928481729Search in Google Scholar

76. G. Wassink, C. A. Lear, K. C. Gunn, J. M. Dean, L. Bennet and A. J. Gunn, Analgesics, sedatives, anticonvulsant drugs, and the cooled brain, Semin. Fetal Neonatal Med.20 (2015) 109–114; https://doi.org/10.1016/j.siny.2014.10.00310.1016/j.siny.2014.10.00325457080Search in Google Scholar

77. K. Mao, D. Lei, H. Zhang and C. You, Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy, Exp. Ther. Med.13 (2017) 695–700; https://doi.org/10.3892/etm.2016.400110.3892/etm.2016.4001534865328352353Search in Google Scholar

78. W. Huang, Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, Y. Xu and J. Pan, Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system, Metab. Brain Dis.28 (2013) 585–595; https://doi.org/10.1007/s11011-013-9426-y10.1007/s11011-013-9426-y23943324Search in Google Scholar

79. H. Li, S. Krstin, S. Wang and M. Wink, Capsaicin and piperine can overcome multidrug resistance in cancer cells to doxorubicin, Molecules23 (2018) Article ID 557 (11 pages); https://doi.org/10.3390/molecules2303055710.3390/molecules23030557601779629498663Search in Google Scholar

80. P. Chonpathompikunlert, J. Wattanathorn and S. Muchimapura, Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease, Food Chem. Toxicol.48 (2010) 798–802; https://doi.org/10.1016/j.fct.2009.12.00910.1016/j.fct.2009.12.00920034530Search in Google Scholar

81. M. Khalili-Fomeshi, M. G. Azizi, M. R. Esmaeili, M. Gol, S. Kazemi, M. Ashrafpour, A. A. Moghadamnia and S. Hosseinzadeh, Piperine restores streptozotocin-induced cognitive impairments: Insights into oxidative balance in cerebrospinal fluid and hippocampus, Behav. Brain Res.337 (2018) 131–138; https://doi.org/10.1016/j.bbr.2017.09.03110.1016/j.bbr.2017.09.03128939403Search in Google Scholar

82. K. Xiao, Y. Li, J. Luo, J. S. Lee, W. Xiao, A. M. Gonik, R. G. Agarwal and K. S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials32 (2011) 3435–3446; https://doi.org/10.1016/j.biomaterials.2011.01.02110.1016/j.biomaterials.2011.01.021305517021295849Search in Google Scholar

83. M. Reza Mozafari, C. Johnson, S. Hatziantoniou and C. Demetzos, Nanoliposomes and their applications in food nanotechnology, J. Liposome Res.18 (2008) 309–327; https://doi.org/10.1080/0898210080246594110.1080/0898210080246594118951288Search in Google Scholar

84. S. Dutta and P. Bhattacharjee, Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction, J. Food Eng.201 (2017) 49–56; https://doi.org/10.1016/j.jfoodeng.2017.01.00610.1016/j.jfoodeng.2017.01.006Search in Google Scholar

85. S. Croy and G. Kwon, Polymeric micelles for drug delivery, Curr. Pharm. Des.12 (2006) 4669–4684; https://doi.org/10.2174/13816120677902624510.2174/13816120677902624517168771Search in Google Scholar

86. J. Wang, D. Mongayt and V. P. Torchilin, Polymeric micelles for delivery of poorly soluble drugs: Preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids, J. Drug Target.13 (2005) 73–80; https://doi.org/10.1080/1061186040001193510.1080/10611860400011935163473715848957Search in Google Scholar

87. Y. Ding, C. Wang, Y. Wang, Y. Xu, J. Zhao, M. Gao, Y. Ding, J. Peng and L. Li, Development and evaluation of a novel drug delivery: Soluplus® /TPGS mixed micelles loaded with piperine in vitro and in vivo, Drug Dev. Ind. Pharm.44 (2018) 1409–1416; https://doi.org/10.1080/03639045.2018.147227710.1080/03639045.2018.147227729718714Search in Google Scholar

88. Y.-C. Yeh, B. Creran and V. M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology, Nanoscale4 (2012) 1871–1880; https://doi.org/10.1039/C1NR11188D10.1039/C1NR11188DSearch in Google Scholar

89. B. G. Anand, D. S. Shekhawat, K. Dubey and K. Kar, Uniform, polycrystalline, and thermostable piperine-coated gold nanoparticles to target insulin fibril assembly, ACS Biomater. Sci. Eng.3 (2017) 1136–1145; https://doi.org/10.1021/acsbiomaterials.7b0003010.1021/acsbiomaterials.7b0003033429588Search in Google Scholar

90. S. Jain, S. R. K. Meka and K. Chatterjee, Engineering a piperine eluting nanofibrous patch for cancer treatment, ACS Biomater. Sci. Eng.2 (2016) 1376–1385; https://doi.org/10.1021/acsbiomaterials.6b0029710.1021/acsbiomaterials.6b0029733434991Search in Google Scholar

91. I. M. Helander, E.-L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades and S. Roller, Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria, Int. J. Food Micro-biol.71 (2001) 235–244; https://doi.org/10.1016/S0168-1605(01)00609-210.1016/S0168-1605(01)00609-2Search in Google Scholar

92. S. Gordon, A. Saupe, W. McBurney, T. Rades and S. Hook, Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery, J. Pharm. Pharmacol.60 (2008) 1591–1600; https://doi.org/10.1211/jpp.60.12.000410.1211/jpp.60.12.0004Search in Google Scholar

93. Y. Baspinar, M. Üstündas, O. Bayraktar and C. Sezgin, Curcumin and piperine loaded zeinchitosan nanoparticles: Development and in-vitro characterisation, Saudi Pharm. J.26 (2018) 323–334; https://doi.org/10.1016/j.jsps.2018.01.01010.1016/j.jsps.2018.01.010585695329556123Search in Google Scholar

94. N. Yadav, S. Khatak and U. V. Singh Sara, Solid lipid nanoparticles – A review, Int. J. Appl. Pharm.4 (2013) 67–72; https://doi.org/10.12691/nnr-4-2-5Search in Google Scholar

95. J. Tang, H. Ji, J. Ren, M. Li, N. Zheng and L. Wu, Solid lipid nanoparticles with TPGS and Brij 78: A co-delivery vehicle of curcumin and piperine for reversing P-glycoprotein-mediated multi-drug resistance in vitro, Oncol. Lett.13 (2017) 389–395; https://doi.org/10.3892/ol.2016.542110.3892/ol.2016.5421524510128123572Search in Google Scholar

96. A. L. Greenshields, C. D. Doucette, K. M. Sutton, L. Madera, H. Annan, P. B. Yaffe, A. F. Knickle, Z. Dong and D. W. Hoskin, Piperine inhibits the growth and motility of triple-negative breast cancer cells, Cancer Lett.357 (2015) 129–140; https://doi.org/10.1016/j.canlet.2014.11.01710.1016/j.canlet.2014.11.01725444919Search in Google Scholar

97. P. B. Yaffe, M. R. Power Coombs, C. D. Doucette, M. Walsh and D. W. Hoskin, Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress, Mol. Carcinog.54 (2015) 1070–1085; https://doi.org/10.1002/mc.2217610.1002/mc.2217624819444Search in Google Scholar

98. V. Da Silva Cardoso, A. B. Vermelho, C. A. R. de Lima, J. M. de Oliveira, M. E. F. de Lima, L. H. P. da Silva, G. M. Direito and M. Das Graças Miranda Danelli, Antigenotoxic effect of piperine in broiler chickens intoxicated with aflatoxin B1, Toxins (Basel) 8 (2016) Article ID 316 (14 pages); https://doi.org/10.3390/toxins811031610.3390/toxins8110316512711327809242Search in Google Scholar

99. Y. Deng, S. Sriwiriyajan, A. Tedasen, P. Hiransai and P. Graidist, Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro, J. Ethnopharmacol.188 (2016) 87–95; https://doi.org/10.1016/j.jep.2016.04.04710.1016/j.jep.2016.04.04727155135Search in Google Scholar

100. V. Gunasekaran, K. Elangovan and S. Niranjali Devaraj, Targeting hepatocellular carcinoma with piperine by radical-mediated mitochondrial pathway of apoptosis: An in vitro and in vivo study, Food Chem. Toxicol.105 (2017) 106–118; https://doi.org/10.1016/j.fct.2017.03.02910.1016/j.fct.2017.03.02928341137Search in Google Scholar

101. L. Si, R. Yang, R. Lin and S. Yang, Piperine functions as a tumor suppressor for human ovarian tumor growth via activation of JNK/p38 MAPK-mediated intrinsic apoptotic pathway, Biosci. Rep.38 (2018) BSR20180503; https://doi.org/10.1042/BSR2018050310.1042/BSR20180503643552529717031Search in Google Scholar

102. D. Anissian, M. Ghasemi-Kasman, M. Khalili-Fomeshi, A. Akbari, M. Hashemian, S. Kazemi and A. A. Moghadamnia, Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy, Int. J. Biol. Macromol.107 (2018) 973–983; https://doi.org/10.1016/j.ijbiomac.2017.09.07310.1016/j.ijbiomac.2017.09.07328939512Search in Google Scholar

103. Y. Dong, Z. Huihui and C. Li, Piperine inhibit inflammation, alveolar bone loss and collagen fibers breakdown in a rat periodontitis model, J. Periodontal Res.50 (2015) 758–765; https://doi.org/10.1111/jre.1226210.1111/jre.1226225736698Search in Google Scholar

104. R. A. Gupta, M. N. Motiwala, N. G. Dumore, K. R. Danao and A. B. Ganjare, Effect of piperine on inhibition of FFA induced TLR4 mediated inflammation and amelioration of acetic acid induced ulcerative colitis in mice, J. Ethnopharmacol.164 (2015) 239–246; https://doi.org/10.1016/j.jep.2015.01.03910.1016/j.jep.2015.01.03925683300Search in Google Scholar

105. Y. Lu, J. Liu, H. Li and L. Gu, Piperine ameliorates lipopolysaccharide-induced acute lung injury via modulating NF-κB signaling pathways, Inflammation39 (2016) 303–308; https://doi.org/10.1007/s10753-015-0250-x10.1007/s10753-015-0250-x26410851Search in Google Scholar

106. Y. A. Samra, H. S. Said, N. M. Elsherbiny, G. I. Liou, M. M. El-Shishtawy and L. A. Eissa, Cepharanthine and piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome, Life Sci.157 (2016) 187–199; https://doi.org/10.1016/j.lfs.2016.06.00210.1016/j.lfs.2016.06.00227266851Search in Google Scholar

107. Q. Q. Mao, Z. Huang, X. M. Zhong, Y. F. Xian and S. P. Ip, Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice, Behav. Brain Res.261 (2014) 140–145; https://doi.org/10.1016/j.bbr.2013.12.02010.1016/j.bbr.2013.12.02024361910Search in Google Scholar

108. G. Chouhan, M. Islamuddin, M. Y. Want, H. A. Ozbak, H. A. Hemeg, D. Sahal and F. Afrin, Leishmanicidal activity of Piper nigrum bioactive fractions is interceded via apoptosis in vitro and substantiated by Th1 immunostimulatory potential in vivo, Front. Microbiol.6 (2015) Article ID 1368 (19 pages); https://doi.org/10.3389/fmicb.2015.0136810.3389/fmicb.2015.01368467271726696979Search in Google Scholar

109. N. K. Sethiya, P. Shah, A. Rajpara, P. A. Nagar and S. H. Mishra, Antioxidant and hepatoprotective effects of mixed micellar lipid formulation of phyllanthin and piperine in carbon tetrachlo-ride-induced liver injury in rodents, Food Funct.6 (2015) 3593–3603; https://doi.org/10.1039/c5fo00947b10.1039/C5FO00947B26333006Search in Google Scholar

110. K. M. Custódio, J. G. de Oliveira, D. Moterle, K. M. Zepon, J. S. Prophiro and L. A. Kanis, A bio-degradable device for the controlled release of Piper nigrum (Piperaceae) standardized extract to control Aedes aegypti (Diptera, Culicidae) larvae, Rev. Soc. Bras. Med. Trop.49 (2016) 687–692; https://doi.org/10.1590/0037-8682-0340-201610.1590/0037-8682-0340-201628001214Search in Google Scholar

111. A. Kumar, D. Sasmal and N. Sharma, Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions, Environ. Toxicol. Pharmacol.39 (2015) 504–514; https://doi.org/10.1016/j.etap.2014.12.02110.1016/j.etap.2014.12.02125682002Search in Google Scholar

112. A. Vurmaz, R. Duman, M. C. Sabaner, T. Ertekin and A. Bilir, Antioxidant effects of piperine in in-vivo chick embryo cataract model induced by steroids, Cutan. Ocul. Toxicol.38 (2019) 182–189; https://doi.org/10.1080/15569527.2019.157052110.1080/15569527.2019.157052130678496Search in Google Scholar

113. A. Mishra, J. K. Punia, C. Bladen, G. W. Zamponi and R. K. Goel, Anticonvulsant mechanisms of piperine, a piperidine alkaloid, Channels9 (2015) 317–323; https://doi.org/10.1080/19336950.2015.109283610.1080/19336950.2015.1092836482612526542628Search in Google Scholar

114. S. Hua, J. Liu, Y. Zhang, J. Li, X. Zhang, L. Dong, Y. Zhao and X. Fu, Piperine as a neuroprotective functional component in rats with cerebral ischemic injury, Food Sci. Nutr.7 (2019) 3443–3451; https://doi.org/10.1002/fsn3.118510.1002/fsn3.1185684884331762997Search in Google Scholar

115. A. Y. Gaafar, H. Yamashita, I. Istiqomah, Y. Kawato, K. Ninomiya, A. Younes and T. Nakai, Comparative immunohistological study on using capsaicin, piperine, and okadaic acid for the transepithelial passage of the inactivated viral and bacterial vaccines in fish, Microsc. Res. Tech. (2020) in press; https://doi.org/10.1002/jemt.2349110.1002/jemt.2349132282995Search in Google Scholar

116. B. Khameneh, M. Iranshahy, M. Ghandadi, D. Ghoochi Atashbeyk, B. S. Fazly Bazzaz and M. Iranshahi, Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus, Drug Dev. Ind. Pharm.41 (2015) 989–994; https://doi.org/10.3109/03639045.2014.92002510.3109/03639045.2014.92002524842547Search in Google Scholar

117. P. Jadhav, C. Bothiraja and A. Pawar, Resveratrol-piperine loaded mixed micelles: formulation, characterization, bioavailability, safety and in vitro anticancer activity, RSC Adv.6 (2016) 112795–112805; https://doi.org/10.1039/C6RA24595A10.1039/C6RA24595ASearch in Google Scholar

118. Y. S. R. Elnaggar, S. M. Etman, D. A. Abdelmonsif and O. Y. Abdallah, Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity, J. Pharm. Sci.104 (2015) 3544–3556; https://doi.org/10.1002/jps.2455710.1002/jps.2455726147711Search in Google Scholar

119. M. Pachauri, E. D. Gupta and P. C. Ghosh, Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy, J. Drug Deliv. Sci. Technol.29 (2015) 269–282; https://doi.org/10.1016/j.jddst.2015.08.00910.1016/j.jddst.2015.08.009Search in Google Scholar

120. S. S. Katiyar, E. Muntimadugu, T. A. Rafeeqi, A. J. Domb and W. Khan, Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment, Drug Deliv.23 (2016) 2608–2616; https://doi.org/10.3109/10717544.2015.103966710.3109/10717544.2015.103966726036652Search in Google Scholar

121. P. Rathee, A. Kamboj and S. Sidhu, Enhanced oral bioavailability of nisoldipine-piperine-loaded poly-lactic-co-glycolic acid nanoparticles, Nanotechnol. Rev.6 (2017) 517–526; https://doi.org/10.1515/ntrev-2017-015110.1515/ntrev-2017-0151Search in Google Scholar

122. Y. Budama-Kilinc, Piperine nanoparticles for topical application: Preparation, characterization, in vitro and in silico evaluation, ChemistrySelect4 (2019) 11693–11700; https://doi.org/10.1002/slct.20190326610.1002/slct.201903266Search in Google Scholar

123. C. Li, Q. Wang, T. Ren, Y. Zhang, C. W. K. Lam, M. S. S. Chow and Z. Zuo, Non-linear pharmacokinetics of piperine and its herb-drug interactions with docetaxel in Sprague-Dawley rats, J. Pharm. Biomed. Anal.128 (2016) 286–293; https://doi.org/10.1016/j.jpba.2016.05.04110.1016/j.jpba.2016.05.04127288758Search in Google Scholar

124. M. Alkholief, Optimization of lecithin-chitosan nanoparticles for simultaneous encapsulation of doxorubicin and piperine, J. Drug Deliv. Sci. Technol.52 (2019) 204–214; https://doi.org/10.1016/j.jddst.2019.04.01210.1016/j.jddst.2019.04.012Search in Google Scholar

125. S. Chen, Q. Li, D. J. McClements, Y. Han, L. Dai, L. Mao and Y. Gao, Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion, Food Hydrocoll.99 (2020) Article ID 105334; https://doi.org/10.1016/j.foodhyd.2019.10533410.1016/j.foodhyd.2019.105334Search in Google Scholar

126. T. Ren, M. Hu, Y. Cheng, T. L. Shek, M. Xiao, N. J. Ho, C. Zhang, S. S. Y. Leung and Z. Zuo, Pipe-rine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control, Eur. J. Pharm. Sci.137 (2019) Article ID 104988; https://doi.org/10.1016/j.ejps.2019.10498810.1016/j.ejps.2019.10498831291598Search in Google Scholar

127. L. Ray, R. Karthik, V. Srivastava, S. P. Singh, A. B. Pant, N. Goyal and K. C. Gupta, Efficient anti-leishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles, Drug Deliv. Transl. Res. (2020) in press (13 pages); https://doi.org/10.1007/s13346-020-00712-910.1007/s13346-020-00712-932016707Search in Google Scholar

128. S. Chen, Y. Zhang, J. Qing, Y. Han, D. J. McClements and Y. Gao, Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core, Food Hydrocoll.103 (2020) Article ID 105651; https://doi.org/10.1016/j.food-hyd.2020.105651Search in Google Scholar

129. D. Zhu, W.-G. Zhang, X.-D. Nie, S.-W. Ding, D.-T. Zhang and L. Yang, Rational design of ultra-small photoluminescent copper nano-dots loaded PLGA micro-vessels for targeted co-delivery of natural piperine molecules for the treatment for epilepsy, J. Photochem. Photobiol. B Biol.205 (2020) Article ID 111805; https://doi.org/10.1016/j.jphotobiol.2020.11180510.1016/j.jphotobiol.2020.11180532092661Search in Google Scholar

130. Z. B. Bolat, Z. Islek, B. N. Demir, E. N. Yilmaz, F. Sahin and M. H. Ucisik, Curcumin- and piper-ine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model, Front. Bioeng. Biotechnol.8 (2020) Article ID 50; https://doi.org/10.3389/fbioe.2020.0005010.3389/fbioe.2020.00050702603032117930Search in Google Scholar

131. L. Slika, A. Moubarak, J. Borjac, E. Baydoun and D. Patra, Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells, Mater. Sci. Eng. C109 (2020) Article ID 110550; https://doi.org/10.1016/j.msec.2019.11055010.1016/j.msec.2019.11055032228916Search in Google Scholar

132. L. Gorgani, M. Mohammadi, G. D. Najafpour and M. Nikzad, Piperine – The bioactive compound of black pepper: From isolation to medicinal formulations, Compr. Rev. Food Sci. Food Saf.16 (2017) 124–140; https://doi.org/10.1111/1541-4337.1224610.1111/1541-4337.1224633371546Search in Google Scholar

133. T. Gao, H. Xue, L. Lu, T. Zhang and H. Han, Characterization of piperine metabolites in rats by ultra-high-performance liquid chromatography with electrospray ionization quadruple time-of-flight tandem mass spectrometry, Rapid Commun. Mass Spectrom.31 (2017) 901–910; https://doi.org/10.1002/rcm.786410.1002/rcm.786428370557Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo