Accesso libero

Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. R. Sharma and Y. Padwad, In search of nutritional anti-aging targets: TOR inhibitors, SASP modulators, and BCL-2 family suppressors, Nutrition65 (2019) 33–38; https://doi.org/10.1016/j.nut.2019.01.02010.1016/j.nut.2019.01.02031029919Search in Google Scholar

2. T. Zuliani, V. Denis, E. Noblesse, S. Schnebert, P. Andre, M. Dumas and M. H. Ratinaud, Hydrogen peroxide-induced cell death in normal human keratinocytes is differentiation dependent, Free Radic. Biol. Med.38 (2005) 307–316; https://doi.org/10.1016/j.freeradbiomed.2004.09.02110.1016/j.freeradbiomed.2004.09.02115629860Search in Google Scholar

3. P. Davalli, T. Mitic, A. Caporali, A. Lauriola and D. D’Arca, ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases, Oxid. Med. Cell. Long.2016 (2016) 3565127; https://doi.org/10.1155/2016/356512710.1155/2016/3565127487748227247702Search in Google Scholar

4. B. W. Darbro, G. B. Schneider and A. J. Klingelhutz, Co-regulation of p16INK4A and migratory genes in culture conditions that lead to premature senescence in human keratinocytes, J. Invest. Dermatol.125 (2005) 499–509; https://doi.org/10.1111/j.0022-202X.2005.23844.x10.1111/j.0022-202X.2005.23844.x202085016117791Search in Google Scholar

5. M. Sasaki, H. Kajiya, S. Ozeki, K. Okabe and T. Ikebe, Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16(INK4a.), Biochem. Biophys. Res. Commun.452 (2014) 622–628; https://doi.org/10.1016/j.bbrc.2014.08.12310.1016/j.bbrc.2014.08.12325181340Search in Google Scholar

6. N. Alépée, M. H. Grandidier and J. Cotovio, Sub-categorisation of skin corrosive chemicals by the EpiSkin™ reconstructed human epidermis skin corrosion test method according to UN GHS: Revision of OECD Test Guideline 431, Toxicol. In Vitro28 (2014) 131–145; https://doi.org/10.1016/j.tiv.2013.10.01610.1016/j.tiv.2013.10.01624211528Search in Google Scholar

7. C. Gerecke, A. Edlich, M. Giulbudagian, F. Schumacher, N. Zhang, A. Said, G. Yealland, S. B. Lohan, F. Neumann, M. C. Meinke, N. Ma, M. Calderon, S. Hedtrich, M. Schafer-Korting and B. Kleuser, Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes, Nanotoxicology11 (2017) 267–277; https://doi.org/10.1080/17435390.2017.129237110.1080/17435390.2017.129237128165853Search in Google Scholar

8. M. Schafer-Korting, U. Bock, A. Gamer, A. Haberland, E. Haltner-Ukomadu, M. Kaca, H. Kamp, M. Kietzmann, H. C. Korting, H. U. Krachter, C. M. Lehr, M. Liebsch, A. Mehling, F. Netzlaff, F. Niedorf, M. K. Rubbelke, U. Schafer, E. Schmidt, S. Schreiber, K. R. Schroder, H. Spielmann and A. Vuia, Reconstructed human epidermis for skin absorption testing: results of the German pre-validation study, Alternat. Lab. Animals34 (2006) 283–294.10.1177/02611929060340031216831060Search in Google Scholar

9. F. M. Batz, W. Klipper, H. C. Korting, F. Henkler, R. Landsiedel, A. Luch, U. von Fritschen, G. Weindl and M. Schafer-Korting, Esterase activity in excised and reconstructed human skin-bio-transformation of prednicarbate and the model dye fluorescein diacetate, Eur. J. Pharm. Biopharm.84 (2013) 374–385; https://doi.org/10.1016/j.ejpb.2012.11.00810.1016/j.ejpb.2012.11.00823201050Search in Google Scholar

10. L. J. Lowenau, C. Zoschke, R. Brodwolf, P. Volz, C. Hausmann, S. Wattanapitayakul, A. Boreham, U. Alexiev and M. Schafer-Korting, Increased permeability of reconstructed human epidermis from UVB-irradiated keratinocytes, Eur. J. Pharm. Biopharm.116 (2017) 149–154; https://doi.org/10.1016/j.ejpb.2016.12.01710.1016/j.ejpb.2016.12.01728034807Search in Google Scholar

11. R. J. Perera, S. Koo, C. F. Bennett, N. M. Dean, N. Gupta, J. Z. Qin and B. J. Nickoloff, Defining the transcriptome of accelerated and replicatively senescent keratinocytes reveals links to differentiation, interferon signaling, and Notch related pathways, J. Cell. Biochem.98 (2006) 394–408; https://doi.org/10.1002/jcb.2078510.1002/jcb.20785Search in Google Scholar

12. J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol.3 (2002) RESEARCH0034.10.1186/gb-2002-3-7-research0034Search in Google Scholar

13. X. Lei, B. Liu, W. Han, M. Ming and Y. Y. He, UVB-Induced p21 degradation promotes apoptosis of human keratinocytes, Photochem. Photobiol. Sci.9 (2010) 1640–1648; https://doi.org/10.1039/c0pp00244e10.1039/c0pp00244eSearch in Google Scholar

14. T. D. Carr, J. DiGiovanni, C. J. Lynch and L. M. Shantz, Inhibition of mTOR suppresses UVB-induced keratinocyte proliferation and survival, Cancer Prev. Res.5 (2012) 1394–404; https://doi.org/10.1158/1940-6207.CAPR-12-0272-T10.1158/1940-6207.CAPR-12-0272-TSearch in Google Scholar

15. J. W. Littlefield, Escape from senescence in human keratinocyte cultures, Exp. Gerontol.31 (1996) 29–32.10.1016/0531-5565(95)00018-6Search in Google Scholar

16. G. A. Rockwell, G. Johnson and A. Sibatani, In vitro senescence of human keratinocyte cultures, Cell Struct. Funct.12 (1987) 539–548.10.1247/csf.12.5392449290Search in Google Scholar

17. C. L. Tu, W. Chang and D. D. Bikle, The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A, J. Invest. Dermatol.131 (2011) 1119–1128; https://doi.org/10.1038/jid.2010.41410.1038/jid.2010.414307821721209619Search in Google Scholar

18. Z. Xie, S. M. Chang, S. D. Pennypacker, E. Y. Liao and D. D. Bikle, Phosphatidylinositol-4-phosphate 5-kinase 1alpha mediates extracellular calcium-induced keratinocyte differentiation, Mol. Biol. Cell20 (2009) 1695–704; https://doi.org/10.1091/mbc.E08-07-075610.1091/mbc.e08-07-0756265524419158393Search in Google Scholar

19. A. Dhumrongvaraporn and P. Chanvorachote, Kinetics of ultraviolet B irradiation-mediated reactive oxygen species generation in human keratinocytes, J. Cosmet. Sci.64 (2013) 207–217.Search in Google Scholar

20. U. Wolfle, P. R. Esser, B. Simon-Haarhaus, S. F. Martin, J. Lademann and C. M. Schempp, UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo, Free Radic. Biol. Med.50 (2011) 1081–1093; https://doi.org/10.1016/j.freeradbiomed.2011.01.02710.1016/j.freeradbiomed.2011.01.02721281711Search in Google Scholar

21. E. Takai, M. Tsukimoto, H. Harada and S. Kojima, Involvement of P2Y6 receptor in p38 MAPK-mediated COX-2 expression in response to UVB irradiation of human keratinocytes, Radiat. Res.175 (2011) 358–366; https://doi.org/10.1667/RR2375.110.1667/RR2375.121388279Search in Google Scholar

22. X. Ren, Y. Shi, D. Zhao, M. Xu, X. Li, Y. Dang and X. Ye, Naringin protects ultraviolet B-induced skin damage by regulating p38 MAPK signal pathway, J. Dermatol. Sci.82 (2016) 106–114; https://doi.org/10.1016/j.jdermsci.2015.12.00810.1016/j.jdermsci.2015.12.00826908354Search in Google Scholar

23. J. Adamus, S. Aho, H. Meldrum, C. Bosko and J. M. Lee, p16INK4A influences the aging pheno-type in the living skin equivalent, J. Invest. Dermatol.134 (2014) 1131–1133; https://doi.org/10.1038/jid.2013.46810.1038/jid.2013.468396160224335897Search in Google Scholar

24. N. Kanda and S. Watanabe, 17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression, J. Invest. Dermatol.123 (2004) 319–328; https://doi.org/10.1111/j.0022-202X.2004.12645.x10.1111/j.0022-202X.2004.12645.x15245432Search in Google Scholar

25. S. Suomela, L. Cao, A. Bowcock and U. Saarialho-Kere, Interferon alpha-inducible protein 27 (IFI27) is upregulated in psoriatic skin and certain epithelial cancers, J. Invest. Dermatol.122 (2004) 717–721; https://doi.org/10.1111/j.0022-202X.2004.22322.x10.1111/j.0022-202X.2004.22322.x15086558Search in Google Scholar

26. P. Sextius, C. Marionnet, C. Tacheau, F. X. Bon, P. Bastien, A. Mauviel, B. A. Bernard, F. Bernerd and L. Dubertret, Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin, Arch. Dermatol. Res.307 (2015) 351–364; https://doi.org/10.1007/s00403-015-1551-510.1007/s00403-015-1551-5440964525740152Search in Google Scholar

27. W. L. Hsieh, Y. H. Huang, T. M. Wang, Y. C. Ming, C. N. Tsai and J. H. Pang, IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes, Cell Prolif.48 (2015) 187–197; https://doi.org/10.1111/cpr.1216810.1111/cpr.12168649626225664647Search in Google Scholar

28. H. K. Kim, Protective effect of garlic on cellular senescence in UVB-exposed HaCaT human keratinocytes, Nutrients8 (2016); https://doi.org/10.3390/nu808046410.3390/nu8080464499737727483310Search in Google Scholar

29. W. T. Liao, J. H. Lu, C. H. Lee, C. E. Lan, J. G. Chang, C. Y. Chai and H. S. Yu, An interaction between arsenic-induced epigenetic modification and inflammatory promotion in a skin equivalent during arsenic carcinogenesis, J. Invest. Dermatol.137 (2017) 187–196; https://doi.org/10.1016/j.jid.2016.08.01710.1016/j.jid.2016.08.01727592797Search in Google Scholar

30. G. P. Studzinski, E. Gocek and M. Danilenko, Chapter 84: Vitamin D Effects on Differentiation and Cell Cycle, in Vitamin D, 3rd ed (Eds. D. Feldman, J. W. Pike, J. S. Adams) Academic Press, San Diego 2011, pp. 1625–1656.10.1016/B978-0-12-381978-9.10084-8Search in Google Scholar

31. H. W. Chiu, C. H. Chen, Y. J. Chen and Y. H. Hsu, Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice, PloS One12 (2017) e0174042; https://doi.org/10.1371/journal.pone.017404210.1371/journal.pone.0174042535442228301572Search in Google Scholar

32. J. Feng, Y. Liao, X. Xu, Q. Yi, L. He and L. Tang, hnRNP A1 promotes keratinocyte cell survival post UVB radiation through PI3K/Akt/mTOR pathway, Expe. Cell Res.362 (2018) 394–399; https://doi.org/10.1016/j.yexcr.2017.12.00210.1016/j.yexcr.2017.12.00229229447Search in Google Scholar

eISSN:
1846-9558
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Pharmacy, other