1. bookVolume 70 (2020): Edizione 4 (December 2020)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Open Access

Probing the release of the chronobiotic hormone melatonin from hybrid calcium alginate hydrogel beads

Pubblicato online: 13 May 2020
Volume & Edizione: Volume 70 (2020) - Edizione 4 (December 2020)
Pagine: 527 - 538
Accettato: 17 Dec 2019
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. S. M. Reppert, D. R. Weaver and C. Godson, Melatonin receptors step into the light: cloning and classification of subtypes, Trends Pharmacol. Sci.17 (1996) 100–102; https://doi.org/10.1016/0165-6147(96)10005-510.1016/0165-6147(96)10005-5Search in Google Scholar

2. E. Mills, P. Wu, D. Seely and G. Guyatt, Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis, J. Pineal. Res.39 (2005) 360–366; https://doi.org/10.1111/j.1600-079X.2005.00258.x10.1111/j.1600-079X.2005.00258.x16207291Search in Google Scholar

3. S. Malhotra, G. Sawhney and P. Pandhi, The therapeutic potential of melatonin: a review of the science, MedGenMed.6 (2004) 46; https://doi.org/10.0000/ncbi.nlm.nih.gov/PMC1395802Search in Google Scholar

4. M. L. Dubocovich, P. Delagrange, D. N. Krause, D. Sugden, D. P. Cardinali and J. Olcese, International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein coupled melatonin receptors, Pharmacol. Rev.62 (2010) 343–380; https://doi.org/10.1124/pr.110.00283210.1124/pr.110.002832296490120605968Search in Google Scholar

5. L. M. Hack, S. W. Lockley, J. Arendt and D. J. Skene, The effects of low-dose 0.5-mg melatonin on the free-running circadian rhythms of blind subjects, J. Biol. Rhythms.18 (2003) 420–429; https://doi.org/10.1177/074873040325679610.1177/074873040325679614582858Search in Google Scholar

6. A. J. Lewy, J. N. Rough, J. B. Songer, N. Mishra, K. Yuhas and J. S. Emens, The phase shift hypothesis for the circadian component of winter depression, Dialogues Clin. Neurosci.9 (2007) 291–300.10.31887/DCNS.2007.9.3/alewySearch in Google Scholar

7. J. Arendt and D. J. Skene, Melatonin as a chronobiotic, Sleep Med. Rev.9 (2005) 25–39; https://doi.org/10.1016/j.smrv.2004.05.00210.1016/j.smrv.2004.05.00215649736Search in Google Scholar

8. R. Sharma, C. R. McMillan, C. C. Ten and L. P. Niles, Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson’s disease, Brain Res.1068 (2006) 230–236; https://doi.org/10.1016/j.brainres.2005.10.08410.1016/j.brainres.2005.10.08416375867Search in Google Scholar

9. M. Olcese, C. Cao, T. Mori, M. B. Mamcarz, A. Maxwell, M. J. Runfelt, C. Wang, X. Lin, G. Zhang and G. W. Arendash, Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease, J. Pineal Res.47 (2009) 82–96; https://doi.org/10.1111/j.1600-079X.2009.00692.x10.1111/j.1600-079X.2009.00692.x19538338Search in Google Scholar

10. S. G. Grant, M. A. Melan, J. J. Latimer and P. A. Witt-Enderby, Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives, Expert Rev. Mol. Med.11 (2009) e5. https://doi.org/10.1017/S146239940900098210.1017/S1462399409000982430173519193248Search in Google Scholar

11. S. Sibel, Melatonin and synthetic analogs as antioxidants, Curr. Drug Deliv. 10 (2013) 71–75; https://doi.org/10.2174/156720181131001001310.2174/156720181131001001322998047Search in Google Scholar

12. M. Vlachou and A. Siamidi, Melatonin Modified Release Formulations, in Melatonin – Molecular Biology, Clinical and Pharmaceutical Approaches (Ed. C. M. Dragoi); http://dx.doi.org/10.5772/intechopen.7833710.5772/intechopen.78337Search in Google Scholar

13. M. Vlachou, A. Siamidi, I. Pareli, A. Zampakola and S. Konstantinidou, An account of modified release of melatonin from compression-coated, uncoated and bilayer tablets, J. Pharm. Pharm. Scien.1 (2016) 10–14; https://doi.org/10.24218/vjpps.2016.1910.24218/vjpps.2016.19Search in Google Scholar

14. M. Vlachou, A. Siamidi, S. Konstantinidou and Y. Dotsikas, Optimization of controlled release matrix formulation of melatonin via experimental design, J. Pharm. Drug Deliv. Res.5 (2016) 1–5; https://doi.org/10.4172/2325-9604.100015910.4172/2325-9604.1000159Search in Google Scholar

15. A. Zampakola, A. Siamidi, N. Pippa, C. Demetzos and M. Vlachou, Chronobiotic hormone melatonin: comparative in vitro release studies from matrix tablets and liposomal formulations, Lett. Drug Des. Discov.14 (2017) 476–480; https://doi.org/10.2174/157018081366616100616224610.2174/1570180813666161006162246Search in Google Scholar

16. M. Vlachou, M. Papamichael, A. Siamidi, I. Fragouli, P. A. Afroudakis, R. Kompogennitaki and Y. Dotsikas, Comparative in vitro controlled release studies on the chronobiotic hormone melatonin from cyclodextrins-containing matrices and cyclodextrin: melatonin complexes, Int. J. Mol. Sci.18 (2017) 1641; https://doi.org/10.3390/ijms1808164110.3390/ijms18081641557803128788064Search in Google Scholar

17. M. Vlachou, K. Tragou, A. Siamidi, S. Kikionis, A. L. Chatzianagnostou, A. Mitsopoulos, E. Ioannou, V. Roussis and A. Tsotinis, Modified in vitro release of the chronobiotic hormone melatonin from matrix tablets based on the marine sulfated polysaccharide ulvan, J. Drug Deliv. Sci. Technol.44 (2018) 41–48; https://doi.org/10.1016/j.jddst.2017.11.01910.1016/j.jddst.2017.11.019Search in Google Scholar

18. M. Vlachou, S. Kikionis, A. Siamidi, K. Tragou, E. Ioannou, V. Roussis and A. Tsotinis, Modified in vitro release of melatonin loaded in nanofibrous electrospun mats incorporated into mono-layered and three-layered tablets, J. Pharm. Sci.108 (2019) 970–976; https://doi.org/10.1016/j.xphs.2018.09.03510.1016/j.xphs.2018.09.03530312723Search in Google Scholar

19. M. Vlachou, S. Kikionis, A. Siamidi, K. Tragou, S. Kapoti, E. Ioannou, V. Roussis and A. Tsotinis, Fabrication and characterization of electrospun nanofibers for the modified release of the chronobiotic hormone melatonin, Curr. Drug Deliv. 16 (2019) 79–85; https://doi.org/10.2174/156720181566618091409570110.2174/1567201815666180914095701634015330215335Search in Google Scholar

20. M. Vlachou, G. Stavrou, A. Siamidi, S. Flitouri, V. Ioannidou and S. Mavrokordopoulos, N-Acetylserotonin vs. melatonin. In vitro controlled release from hydrophilic matrix tablets, Lett. Drug Des. Discov.16 (2019) 347–352; https://doi.org/10.2174/157018081566618040412551910.2174/1570180815666180404125519Search in Google Scholar

21. B. Girgin, O. Korkmaz, R. Yavaşer and A. A. Karagözler, Production and drug release assessment of melatonin-loaded alginate/gum arabic beads, JOTCSA3 (2016) 205–216; https://doi.org/10.18596/jotcsa.3088010.18596/jotcsa.30880Search in Google Scholar

22. O. Şanlı, N. Ay and N. Işıklan, Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly (vinyl alcohol)-grafted-poly (acrylamide)/sodium alginate blend beads, Eur. J. Pharm. Biopharm.65 (2007) 204–214; https://doi.org/10.1016/j.ejpb.2006.08.00410.1016/j.ejpb.2006.08.004Search in Google Scholar

23. N. Pippa, N. Bouropoulos, S. Pispas, C. Demetzos and A. Papalois, Chapter 3. Hydrogels as intelligent drug delivery systems in drug delivery, Nanosystems 2019; 59–91; https://doi.org/10.1201/9780429490545-310.1201/9780429490545-3Search in Google Scholar

24. Pharmacopeia US, USP 29-NF24, Rockville, 2005.Search in Google Scholar

25. G. Pasparakis and N. Bouropoulos, Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads, Int. J. Pharm.323 (2006) 34–42; https://doi.org/10.1016/j.ijpharm.2006.05.05410.1016/j.ijpharm.2006.05.054Search in Google Scholar

26. I. Colinet, V. Dulong, G. Mocanu, L. Picton and D. Le Cerf, New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug, Eur. J. Pharm. Biopharm.73 (2009) 345–350; https://doi.org/10.1016/j.ejpb.2009.07.00810.1016/j.ejpb.2009.07.008Search in Google Scholar

27. N. Pippa, T. Sentoukas, S. Pispas, C. Demetzos, A. Papalois and N. Bouropoulos, pH-responsive polymeric nanoassemblies encapsulated into alginate beads: morphological characterization and swelling studies, J. Pol. Res.25 (2018) 117; https://doi.org/10.1007/s10965-018-1519-110.1007/s10965-018-1519-1Search in Google Scholar

28. J. Siepmann and N. A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Adv. Drug Deliv. Rev.48 (2001) 139–57; https://doi.org/10.1016/S0169-409X(01)00112-010.1016/S0169-409X(01)00112-0Search in Google Scholar

29. P. L. Ritger and N. A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release5 (1987) 37–42; https://doi.org/10.1016/0168-3659(87)90035-610.1016/0168-3659(87)90035-6Search in Google Scholar

30. Ν. Η. Anderson, Μ. Bauer, Ν. Boussac, Ρ. R. Khan-Malek, P. Munden and M. Sardaro, An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles, J. Pharm. Biomed. Anal. 17 (1998) 811–822; https://doi.org/10.1016/s0731-7085(98)00011-910.1016/S0731-7085(98)00011-9Search in Google Scholar

31. J. L. Shamshina, G. Gurau, L. E. Block, L. K. Hansen, C. Dingee, A. Walters and R. D. Rogers, Chitin--calcium alginate composite fibers for wound care dressings spun from ionic liquid solution, J. Mater. Chem. B2 (2014) 3924; http://dx.doi.org/10.1039/C4TB00329B10.1039/C4TB00329BSearch in Google Scholar

32. S. Soni, A. Verma and V. Ram, Evaluation of chitosan-hydroxy propyl methyl cellulose as a single unit hydrodynamically balanced sustained release matrices for stomach specific delivery of piroxicam, MOJ Bioequiv. 2 (2016) 14; http://dx.doi.org/10.4172/0975-0851.C1.02510.4172/0975-0851.C1.025Search in Google Scholar

33. T. H. C. Salles, C. B. Lombello and M. A. d’ Ávila, Electrospinning of gelatin/poly (vinyl pyrrolidone) blends from water/acetic acid solutions, Materials Research18 (2015) 509–518; http://dx.doi.org/10.1590/1516-1439.31011410.1590/1516-1439.310114Search in Google Scholar

34. Y. Listiohadi, J. A. Hourigan, R. W. Sleigh and R. J. Steele, Thermal analysis of amorphous lactose and α-lactose monohydrate, Dairy Sci. Technol.89 (2009) 43–67; https://doi.org/10.1051/dst:200802710.1051/dst:2008027Search in Google Scholar

35. A. S. Hoffman Hydrogels for biomedical applications, Adv. Drug Deliv. Rev.43 (2002) 3–12; https://doi.org/10.1016/j.addr.2012.09.01010.1016/j.addr.2012.09.010Search in Google Scholar

36. S. P. Chaudhari and R. H. Dave, Investigating the effect of molecular weight of polyvinylpyrrolidone and hydroxypropyl methyl cellulose as potential antiprecipitants on supersaturated drug solutions and formulations using weakly acidic drug: indomethacin, IJPSR7 (2016) 3931–3948; https://doi.org/10.13040/IJPSR.0975-8232.7(10).3931-4810.13040/IJPSR.0975-8232.7(10).3931-48Search in Google Scholar

37. A. Körner, L. Piculell, F. Iselau, B. Wittgren and A. Larsson, Influence of different polymer types on the overall release mechanism in hydrophilic matrix tablets, Molecules14 (2009) 2699–2716; https://doi.org/10.3390/molecules1408269910.3390/molecules14082699625537619701117Search in Google Scholar

38. M. Vlachou, A. Siamidi and E. Geraniou, Modified release of furosemide from Eudragits® and poly(ethylene oxide)-based matrices and dry-coated tablets, Acta Pharm.70 (2020) 49–61; https://doi.org/10.2478/acph-2020-001010.2478/acph-2020-001031677367Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo