1. bookVolume 70 (2020): Edizione 4 (December 2020)
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Piperazine derivatives as dangerous abused compounds

Pubblicato online: 13 May 2020
Volume & Edizione: Volume 70 (2020) - Edizione 4 (December 2020)
Pagine: 423 - 441
Accettato: 03 Dec 2019
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno

1. B. P. Kersten and M. E. McLaughlin, Toxicology and management of novel psychoactive drugs, J. Pharm.28 (2015) 50–65; https://doi.org/10.1177/089719001454481410.1177/089719001454481425261428Search in Google Scholar

2. D. P. Katz, J. Deruiter, D. Bhattacharya, M. Ahuja, S. Bhattacharya and C. R. Clark, Benzylpiperazine: “A messy drug”, Drug Alc. Dep.164 (2016) 1–7; https://doi.org/10.1016/j.drugalcdep.2016.04.01010.1016/j.drugalcdep.2016.04.01027207154Search in Google Scholar

3. A. Kwiatkowska and W. Lewicka, New psychoactive substances and risky sexual behaviors: chemsex, teensex, slamsex, Świat Probl. (World of Problems)309 (2018) 7–10.Search in Google Scholar

4. F. Schifano, L. Orsolini, G. D. Papanti and J. M. Corkery, Novel psychoactive substances of interest for psychiatry, World Psych.14 (2015) 15–26; https://doi.org/10.1002/wps.2017410.1002/wps.20174432988425655145Search in Google Scholar

5. Y. Boumrah, M. Rosset, Y. Lecompte, S. Bouanani, K. Khimeche and A. Dahmani, Development of a targeted GC/MS screening method and validation of an HPLC/DAD quantification method for piperazines-amphetamines mixtures in seized material, Egypt. J. For. Sci.4 (2014) 90–99; https://doi.org/10.1016/j.ejfs.2014.03.00210.1016/j.ejfs.2014.03.002Search in Google Scholar

6. C. D. Rosenbaum, S. P. Carreiro and K. M. Babu, Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (bath salts), kratom, Salvia divinorum, methoxetamine, and piperazines, J. Med. Toxicol.8 (2012) 15–32; https://doi.org/10.1007/s13181-011-0202-210.1007/s13181-011-0202-2355022022271566Search in Google Scholar

7. M. D. Arbo, M. L. Bastos and H. F. Carmo, Piperazine compounds as drugs of abuse, Drug Alc. Dep.122 (2012) 174–185; https://doi.org/10.1016/j.drugalcdep.2011.10.00710.1016/j.drugalcdep.2011.10.00722071119Search in Google Scholar

8. Y. P. Gaillard, A. C. Cuquel, A. Boucher, L. Romeuf, F. Bevalot, J. M. Prevosto and J. M. Menard, A fatality following ingestion of the designer drug meta-chlorophenylpiperazine (mCPP) in an asthmatic – HPLC-MS/MS detection in biofluids and hair, J. For. Sci.58 (2013) 263–269; https://doi.org/10.1111/j.1556-4029.2012.02254.x10.1111/j.1556-4029.2012.02254.x23009714Search in Google Scholar

9. D. De Berardis, G. Rapini, L. Olivieri, D. Di Nicola, C. Tomasetti, A. Valchera, M. Fornaro, F. Di Fabio, G. Perna, M. Di Nicola, G. Serafini, A. Carano, M. Pompili, F. Vellante, L. Orsolini, G. Martinotti and M. Di Giannantonio, Safety of antipsychotics for the treatment of schizophrenia: a focus on the adverse effects of clozapine, Ther. Adv. Drug Saf.9 (2018) 237–256; https://doi.org/10.1177/204209861875626110.1177/2042098618756261595695329796248Search in Google Scholar

10. A. Pouliopoulos, E. Tsakelidou, A. Krokos, H. G. Gika, G. Theodoridis and N. Raikos, Quantification of 15 psychotropic drugs in serum and postmortem blood samples after a modified mini-QuEChERS by UHPLC–MS-MS, J. Anal. Toxicol.42 (2018) 337–345; https://doi.org/10.1093/jat/bky00610.1093/jat/bky00629373719Search in Google Scholar

11. U. Hariharan, M. Hariharan, J. S. Naickar and R. Tandon, Determination of clozapine and its two major metabolites in human serum by liquid chromatography using ultraviolet detection, J. Liq. Chrom. Rel. Technol.19 (1996) 2409–2417; https://doi.org/10.1080/1082607960801402610.1080/10826079608014026Search in Google Scholar

12. M. Pogorzała, J. Styczyński, K. Jankowska, A. Kurylak and M. Wysocki, Imatinib mesylate in treatment of childhood chronic myeloid leukaemia. Preliminary report, Med. W. Rozwoj. (Developmental Period Medicine) 10 (2006) 603–612.Search in Google Scholar

13. A. Wojnicz, B. Colom-Fernández, J. L. Steegmann, C. Muñoz-Calleja, F. Abad-Santos and A. RuizNuño, Simultaneous Determination of imatinib, dasatinib, and nilotinib by liquid chromatographytandem mass spectrometry and its application to therapeutic drug monitoring, Ther. Drug Monit.39 (2017) 252–262; https://doi.org/10.1097/FTD.000000000000040610.1097/FTD.000000000000040628490048Search in Google Scholar

14. M. Gackowski, M. Koba, K. Mądra-Gackowska and S. Kruszewski, Comparison of high-performance thin layer chromatography/UV-densitometry and UV-derivative spectrophotometry for the determination of trimetazidine in pharmaceutical formulations, Acta Pharm.69 (2019) 413–422; https://doi.org/10.2478/acph-2019-002810.2478/acph-2019-002831259733Search in Google Scholar

15. L. Wang, Y. Zhang, X. Du, T. Ding, W. Gong and F. Liu, Review of antidepressants in clinic and active ingredients of traditional Chinese medicine targeting 5-HT1A receptors, Biomed. Pharmacother.120 (2019) 1–9; https://doi.org/10.1016/j.biopha.2019.10940810.1016/j.biopha.2019.10940831541883Search in Google Scholar

16. D. M. Wood, L. De La Rue, A. A. Hosin, G. Jurgens, E. Liakoni, F. Heyerdahl, K. E. Hovda, A. Dines, I. Giraudon, M. E. Liechti and P. I. Dargan, Poor identification of emergency department acute recreational drug toxicity presentations using routine hospital coding systems: the experience in Denmark, Switzerland and the UK, J. Med. Toxicol.15 (2019) 112–120; https://doi.org/10.1007/s13181-018-0687-z10.1007/s13181-018-0687-z644092930603897Search in Google Scholar

17. M. S. Monteiro, M. de Lourdes Bastos, P. Guedes de Pinho and M. Carvalho, Update on 1-benzylpiperazine (BZP) party pills, Arch. Toxicol. 87 (2013) 929–947; https://doi.org/10.1007/s00204-013-1057-x10.1007/s00204-013-1057-x23685794Search in Google Scholar

18. Y. Ren, J. Du, X. Du, G. Xin, J. Chang, H. Zhou and H. Hao, A novel analytical method of TFMPP and mCPP in fluids of drug addicts using LLE-GC/NPD, Tech. Health Care27 (2019) 67–84; https://doi.org/10.3233/THC-19900810.3233/THC-199008659798831045528Search in Google Scholar

19. M. S. Castaneto, A. J. Barnes, M. Concheiro, K. L. Klette, T. A. Martin and M. A. Huestis, Biochip array technology immunoassay performance and quantitative confirmation of designer piperazines for urine workplace drug testing, Anal. Bioanal. Chem. 407 (2015) 4639–4648; https://doi.org/10.1007/s00216-015-8660-z10.1007/s00216-015-8660-z25903022Search in Google Scholar

20. D. Zuba, B. Byrska, P. Pytka, K. Sekuła and R. Stanaszek, Mass Spectra of the Active Ingredients of Preparations of Designer Drugs (original title: Widma masowe składników aktywnych preparatów typu dopalacze), Institute of Forensic Research Publishers, Kraków 2011, pp. 197–221.Search in Google Scholar

21. K. Persona, A. Polus, J. Góralska, A. Gruca, A. Dembińska-Kieć and W. Piekoszewski, An in vitro study of the neurotoxic effects of N-benzylpiperazine: a designer drug of abuse, Neurotox. Res.29 (2016) 558–568; https://doi.org/10.1007/s12640-016-9604-x10.1007/s12640-016-9604-x482048126861955Search in Google Scholar

22. A. Zwartsen, L. Hondebrink and R. H. Westerink, Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA), NeuroTox.66 (2018) 87–97; https://doi.org/10.1016/j.neuro.2018.03.00710.1016/j.neuro.2018.03.00729572046Search in Google Scholar

23. A. Welz and M. Koba, Piperazine derivatives in designer drugs – compounds of great popularity and high risk for human health, Farm. Pol. 73 (2017) 487–494.Search in Google Scholar

24. D. Dias da Silva, M. J. Silva, P. Moreira, M. J. Martins, M. J. Valente, F. Carvalho, M. L. Bastos and H. Carmo, In vitro hepatotoxicity of ‘Legal X’: the combination of 1-benzylpiperazine (BZP) and 1-(mtrifluoromethylphenyl)piperazine (TFMPP) triggers oxidative stress, mitochondrial impairment and apoptosis, Arch. Toxicol. 91 (2017) 1413–1430; https://doi.org/10.1007/s00204-016-1777-910.1007/s00204-016-1777-927358233Search in Google Scholar

25. D. M. Wood, J. Button, S. Lidder, J. Ramsey, D. W. Holt and P. I. Dargan, Dissociative and sympathomimetic toxicity associated with recreational use of 1-(3-trifluoromethylphenyl)piperazine (TFMPP) and 1-benzylpiperazine (BZP), J. Med. Toxicol.4 (2008) 254–257; https://doi.org/10.1007/bf0316120910.1007/BF03161209355011219031377Search in Google Scholar

26. M. E. Musselman and J. P. Hampton, “Not for human consumption”: A review of emerging designer drugs, Pharmacotherapy 34 (2014) 745–757; https://doi.org/10.1002/phar.142410.1002/phar.142424710806Search in Google Scholar

27. B. M. Cohen and R. Butler, BZP-party pills: A review of research on benzylpiperazine as a recreational drug, Int. J. Drug Policy22 (2011) 95–101; https://doi.org/10.1016/j.drugpo.2010.12.00210.1016/j.drugpo.2010.12.00221242080Search in Google Scholar

28. H. Lee, G. Y. Wang, L. E. Curley, J. J. Sollers, R. R. Kydd, I. J. Kirk and B. R. Russell, Acute effects of BZP, TFMPP and the combination of BZP and TFMPP in comparison to dexamphetamine on an auditory oddball task using electroencephalography: a single-dose study, Psychopharmacology (Berlin) 233 (2016) 863–871; https://doi.org/10.1007/s00213-015-4165-x10.1007/s00213-015-4165-x26630992Search in Google Scholar

29. M. G. Fitzsimons, Y. Ishizawa and K. H. Baker, Drug testing physicians for substances of abuse: case report of false-positive result, J. Clin. Anesth. 25 (2013) 669–671; https://doi.org/10.1016/j.jclinane.2013.05.00910.1016/j.jclinane.2013.05.00923988805Search in Google Scholar

30. J. Jaroszyński, M. Roszkowska and H. Plata, Designer drugs – a threat whether already plague? Part 1, Farm. Pol. 72 (2016) 342–347.Search in Google Scholar

31. S. W. Tang and W. H. Tang, Opportunities in novel psychotropic drug design from natural compounds, Int. J. Neuropsychopharmacol.22 (2019) 601–607; https://doi.org/10.1093/ijnp/pyz04210.1093/ijnp/pyz042675473331353393Search in Google Scholar

32. European Monitoring Centre for Drugs and Drug Addiction, European Drug Report: Trends and Developments – 2017, EMCDDA, Publications Office of the European Union, Luxembourg 2017, pp. 34; http://www.emcdda.europa.eu/system/files/publications/4541/TDAT17001ENN.pdfSearch in Google Scholar

33. F. Schifano, Recent changes in drug abuse scenarios: The new/novel psychoactive substances (NPS) phenomenon, Brain Sci.8 (2018) 1–3; https://doi.org/10.3390/brainsci812022110.3390/brainsci8120221631677330551554Search in Google Scholar

34. E. Wadsworth, C. Drummond and P. Deluca, The dynamic environment of crypto markets: The lifespan of new psychoactive substances (NPS) and vendors selling NPS, Brain Sci.8 (2018) 1–9; https://doi.org/10.3390/brainsci803004610.3390/brainsci8030046587036429547520Search in Google Scholar

35. J. Neicun, M. Steenhuizen, R. van Kessel, J. C. Yang, A. Negri, K. Czabanowska, O. Corazza and A. Roman-Urrestarazu, Mapping novel psychoactive substances policy in the EU: The case of Portugal, the Netherlands, Czech Republic, Poland, the United Kingdom and Sweden, Plos One14 (2019) 1–29; https://doi.org/10.1371/journal.pone.021801110.1371/journal.pone.0218011659460431242225Search in Google Scholar

36. C. Görgens, S. Guddat, A. K. Orlovius, G. Sigmund, A. Thomas, M. Thevis and W. Schänzer, “Diluteand-inject” multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing, Anal. Bioanal. Chem. 407 (2015) 5365–5379; https://doi.org/10.1007/s00216-015-8699-x10.1007/s00216-015-8699-x25925859Search in Google Scholar

37. C. Wilkins and P. Sweetsur, The impact of the prohibition of benzylpiperazine ( BZP ) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand, Drug Alc. Dep. 127 (2013) 72–80; https://doi.org/10.1016/j.drugalcdep.2014.07.01110.1016/j.drugalcdep.2014.07.01125213143Search in Google Scholar

38. L. Hondebrink, A. Zwartsen and R. H. S. Westerink, Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data? Pharmacol. Ther. 182 (2018) 193–224; https://doi.org/10.1016/j.pharmthera.2017.10.02210.1016/j.pharmthera.2017.10.02229097307Search in Google Scholar

39. A. Zwartsen, C. H. C. Litjens, L. Hondebrink, J. J. M. W. van den Heuvel, R. Greupink, F. G. M. Russel, D. W. de Lange, J. Legler, J. B. Koenderink and R. H. S. Westerink, Differential effects of psychoactive substances on human wildtype and polymorphic T356M dopamine transporters (DAT), Toxicology422 (2019) 69–75; https://doi.org/10.1016/j.tox.2019.04.01210.1016/j.tox.2019.04.01231009648Search in Google Scholar

40. M. A. Sahai, C. Davidson, N. Dutta and J. Opacka-Juffry, mechanistic insights into the stimulant properties of novel psychoactive substances (NPS) and their discrimination by the dopamine transporter-in silico and in vitro exploration of dissociative diarylethylamines, Brain Sci.8 (2018) 1–19; https://doi.org/10.3390/brainsci804006310.3390/brainsci8040063592439929642450Search in Google Scholar

41. W. J. Scotton, L. J. Hill, A. C. Williams and N. M. Barnes, Serotonin syndrome: Pathophysiology, clinical features, management, and potential future directions, Int. J. Tryptophan Res.12 (2019) 1–14; https://doi.org/10.1177/117864691987392510.1177/1178646919873925673460831523132Search in Google Scholar

42. A. C. Parrott, Mood fluctuation and psychobiological instability: The same core functions are disrupted by novel psychoactive substances and established recreational drugs, Brain Sci.8 (2018) 43; https://doi.org/10.3390/brainsci803004310.3390/brainsci8030043587036129533974Search in Google Scholar

43. C. D. Smith and S. Robert, ‘Designer drugs’: update on the management of novel psychoactive substance misuse in the acute care setting, Clin. Med. 14 (2014) 409–415; https://doi.org/10.7861/clinmedicine.14-4-40910.7861/clinmedicine.14-4-409495283625099844Search in Google Scholar

44. L. Orsolini, G. D. Papanti, D. De Berardis, A. Guirguis, J. M. Corkery and F. Schifano, The “Endless trip” among the NPS users: psychopathology and psychopharmacology in the hallucinogen-persisting perception disorder. A systematic review, Front. Psychiatry8 (2017) 1–10; https://doi.org/10.3389/fpsyt.2017.0024010.3389/fpsyt.2017.00240570199829209235Search in Google Scholar

45. J. M. Thomas, C. T. Dourish, J. Tomlinson, Z. Hassan-Smith, P. C. Hansen and S. Higgs, The 5-HT2C receptor agonist meta-chlorophenylpiperazine (mCPP) reduces palatable food consumption and BOLD fMRI responses to food images in healthy female volunteers, Psychopharmacology235 (2018) 257–267; https://doi.org/10.1007/s00213-017-4764-910.1007/s00213-017-4764-9574841629080906Search in Google Scholar

46. D. E. Felsing, C. E. Canal and R. G. Booth, Ligand-directed serotonin 5-HT2C receptor desensitization and sensitization, Eur. J. Pharmacol.848 (2019) 131–139 https://doi.org/10.1016/j.ejphar.2019.01.03710.1016/j.ejphar.2019.01.037676791930689993Search in Google Scholar

47. L. D. Simmler, A. Rickli, Y. Schramm, M. C. Hoener and M. E. Liechti, Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives, Biochem. Pharmacol. 88 (2014) 237–244; https://doi.org/10.1016/j.bcp.2014.01.02410.1016/j.bcp.2014.01.02424486525Search in Google Scholar

48. D. Luethi and M. E. Liechti, Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics, Int. J. Neuropsychopharmacol.21 (2018) 926–931; https://doi.org/10.1093/ijnp/pyy04710.1093/ijnp/pyy047616595129850881Search in Google Scholar

49. K. T. Kirla, K. J. Groh, M. Poetzsch, R. K. Banote, J. Stadnicka-Michalak, R. I. L. Eggen, K. Schirmer and T. Kraemer, Importance of toxicokinetics to assess the utility of zebrafish larvae as model for psychoactive drug screening using meta-chlorophenylpiperazine (mCPP) as example, Front. Pharmacol.9 (2018) 1–12; https://doi.org/10.3389/fphar.2018.0041410.3389/fphar.2018.00414593257129755353Search in Google Scholar

50. M. D. Arbo, R. Silva, D. J. Barbosa, D. D. Dias da Silva, L. G. Rossato, Mde L. Bastos and H. Carmo, Piperazine designer drugs induce toxicity in cardiomyoblast h9c2 cells through mitochondrial impairment, Toxicol. Lett. 229 (2014) 178–189; https://doi.org/10.1016/j.toxlet.2014.06.03110.1016/j.toxlet.2014.06.03124968061Search in Google Scholar

51. G. Repetto, A. del Peso and J. L. Zurita, Neutral red uptake assay for the estimation of cell viability/cytotoxicity, Nat. Protoc. 3 (2008) 1125–1131; https://doi.org/10.1038/nprot.2008.7510.1038/nprot.2008.7518600217Search in Google Scholar

52. A. Zwartsen, T. de Korte, P. Nacken, D. W. de Lange, R. H. S. Westerink and L. Hondebrink, Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings, J. Mol. Cell. Cardiol.136 (2019) 102–112; https://doi.org/10.1016/j.yjmcc.2019.09.00710.1016/j.yjmcc.2019.09.00731526813Search in Google Scholar

53. L. E. Curley, R. R. Kydd, I. J. Kirk and B. R. Russell, Differential responses to anticipation of reward after an acute dose of the designer drugs benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) alone and in combination using functional magnetic resonance imaging (fMRI), Psychopharmacology229 (2013) 673–685; https://doi.org/10.1007/s00213-013-3128-310.1007/s00213-013-3128-323666554Search in Google Scholar

54. T. Misiuro and Ł. Nikel, Event-related Potentials in Studies of Deception Detection, in Studies of Psychology in KUL, Publishing House of Catholic University of Lublin, Lublin 2012, Vol. 18, pp. 217–232.Search in Google Scholar

55. D. Dias-da-Silva, M. D. Arbo, M. J. Valente, M. L. Bastos and H. Carmo, Hepatotoxicity of piperazine designer drugs: Comparison of different in vitro models, Toxicol. In Vitro29 (2015) 987–996; https://doi.org/10.1016/j.tiv.2015.04.00110.1016/j.tiv.2015.04.00125863214Search in Google Scholar

56. C. Gu, C. S Elmore, J. Lin, D. Zhou, R. Luzietti, P. Dorff and S. W. Grimm, Metabolism of a G proteincoupled receptor modulator, including two major 1,2,4-oxadiazole ring-opened metabolites and a rearranged cysteine-piperazine adduct, Drug Metab. Dispos.40 (2012) 1151–1163; https://doi.org/10.1124/dmd.112.04463610.1124/dmd.112.04463622397852Search in Google Scholar

57. C. R. Min, M. J. Kim, Y. J. Park, H. R. Kim, S. Y. Lee, K. H. Chung and S. M. Oh, Estrogenic effects and their action mechanism of the major active components of party pill drugs, Toxicol. Lett.214 (2012) 339–347; https://doi.org/10.1016/j.toxlet.2012.09.01410.1016/j.toxlet.2012.09.01423026265Search in Google Scholar

58. M. J. Swortwood, D. M. Boland and A. P. DeCaprio, Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC-QQQ-MS/MS analysis, Anal. Bioanal. Chem. 405 (2013) 1383–1397; https://doi.org/10.1007/s00216-012-6548-810.1007/s00216-012-6548-823180084Search in Google Scholar

59. M. Tang, C. K. Ching, M. L. Tse, C. Ng, C. Lee, Y. K. Chong, W. Wong and T. W. Mak, Surveillance of emerging drugs of abuse in Hong Kong: validation of an analytical tool, Hong Kong Med. J. 21 (2015) 114–123; https://doi.org/10.12809/hkmj14439810.12809/hkmj14439825756277Search in Google Scholar

60. M. Paul, J. Ippisch, C. Herrmann, S. Guber and W. Schultis, Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach, Anal. Bioanal. Chem. 406 (2014) 4425–4441; https://doi.org/10.1007/s00216-014-7825-510.1007/s00216-014-7825-524828977Search in Google Scholar

61. M. Concheiro, M. Castaneto, R. Kronstrand and M. A. Huestis, Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography-high resolution mass spectrometry and library matching, J. Chromatogr. A1397 (2015) 32–42; https://doi.org/10.1016/j.chroma.2015.04.00210.1016/j.chroma.2015.04.002443376025931378Search in Google Scholar

62. A. J. Dickson, S. P. Vorce, J. M. Holler and T. P. Lyons, Detection of 1-benzylpiperazine, 1-(3-trifluoromethylphenyl)-piperazine, and 1-(3-chlorophenyl)-piperazine in 3,4-methylenedioxymethamphetamine-positive urine samples, J. Anal. Toxicol. 34 (2010) 464–469; https://doi.org/10.1093/jat/34.8.46410.1093/jat/34.8.46421819791Search in Google Scholar

63. B. Byrska, D. Zuba and R. Stanaszek, Determination of piperazine derivatives in “legal highs”, Probl. Forensic Sci. 81 (2010) 101–113; http://www.forensicscience.pl/pfs/81_byrska.pdfSearch in Google Scholar

64. N. M. Beckett, S. L. Cresswell, D. I. Grice and J. F. Carter, Isotopic profiling of seized benzylpiperazine and trifluoromethylphenylpiperazine tablets using δ13C and δ15N stable isotopes, Sci. Justice55 (2015) 51–56; https://doi.org/10.1016/j.scijus.2014.08.00310.1016/j.scijus.2014.08.00325577007Search in Google Scholar

65. J. DeRuiter, A. Van Cleave, A. de Sousa Moura, Y. Abiedalla and C. R. Clark, Disubstituted piperazine analogues of trifluoromethylphenylpiperazine and methylenedioxybenzylpiperazine: analytical differentiation and serotonin receptor binding studies, Forensic Sci. Res.3 (2018) 161–169; https://doi.org/10.1080/20961790.2018.144549710.1080/20961790.2018.1445497619708930483665Search in Google Scholar

66. C. Guillou, F. Reniero, J. Lobo Vicente, M. Holland, K. Kolar, H. Chassaigne, S. Tirendi and H. Schepers, Collaboration of the joint research centre and European customs laboratories for the identification of new psychoactive substances, Curr. Pharm. Biotechnol.19 (2018) 91–98; https://doi.org/10.2174/138920101966618052312271710.2174/1389201019666180523122717611004029792142Search in Google Scholar

67. R. J. Waite, G. J. Barbante, N. W. Barnett, E. M. Zammit and P. S. Francis, Chemiluminescence detection of piperazine designer drugs and related compounds using tris(2,2′-bipyridine)ruthenium(III), Talanta116 (2013) 1067–1072; https://doi.org/10.1016/j.talanta.2013.08.02910.1016/j.talanta.2013.08.02924148517Search in Google Scholar

68. K. A. Kovar and M. Laudszun, Chemistry and reaction mechanisms of rapid tests for drugs of abuse and precursors chemicals, United Nations – Scientific and Technical Notes – SCITEC/6, February 1989, Vol. 89-51669, pp. 1–19; https://mafiadoc.com/chemistry-and-reaction-mechanisms-of-rapidtests_5a1f0c171723dd457b42455f.htmlSearch in Google Scholar

69. L. Elie, M. Baron, R. Croxton and M. Elie, Microcrystalline identification of selected designer drugs, Forensic Sci. Int. 214 (2012) 182–188; https://doi.org/10.1016/j.forsciint.2011.08.00510.1016/j.forsciint.2011.08.00521889275Search in Google Scholar

70. M. Philp, R. Shimmon, N. Stojanovska, M. Tahtouh and S. Fu, Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials, Anal. Meth. 5 (2013) 5402–5410; https://doi.org/10.1039/c3ay40511g10.1039/c3ay40511gSearch in Google Scholar

71. S. A. Waddell, C. Fernandez, C. C. Inverarity and R. Prabhu, Extending the capability of forensic electrochemistry to the novel psychoactive substance benzylpiperazine, Sens. Bio-Sens. Res. 13 (2017) 28–39.10.1016/j.sbsr.2016.12.001Search in Google Scholar

72. S. C. Bishop, B. R. McCord, S. R. Gratz, J. R. Loeliger and M. R. Witkowski, Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector, J. Forensic Sci. 50 (2005) 1–10; https://doi.org/10.1520/JFS200423910.1520/JFS2004239Search in Google Scholar

73. P. D. Maskell, L. N. Seetohul, A. C. Livingstone, A. K. Cockburn, J. Preece and D. J. Pounder, Stability of 3,4-methylenedioxymethampetamine (MDMA), 4-methylmethcathinone (mephedrone) and 3-tri-fluoromethylphenylpiperazine (3-TFMPP) in formalin solution, J. Anal. Toxicol.37 (2013) 440–446; https://doi.org/10.1093/jat/bkt05110.1093/jat/bkt05123861339Search in Google Scholar

74. D. S. Wenholz, S. Luong, M. Philp, S. L. Forbes, B. H. Stuart, O. H. Drummer and S. Fu, A study to model the post-mortem stability of 4-MMC, MDMA and BZP in putrefying remains, For. Sci. Int.265 (2016) 54–60; https://doi.org/10.1016/j.forsciint.2016.01.00610.1016/j.forsciint.2016.01.00626829335Search in Google Scholar

75. R. D. Johnson and S. R. Botch-Jones, The stability of four designer drugs: MDPV, mephedrone, BZP and TFMPP in three biological matrices under various storage conditions, J. Anal. Toxicol.37 (2013) 51–55; https://doi.org/10.1093/jat/bks13810.1093/jat/bks13823325764Search in Google Scholar

76. T. Lau, R. LeBlanc and S. Botch-Jones, Stability of synthetic piperazines in human whole blood, J. Anal. Toxicol.42 (2018) 88–98; https://doi.org/10.1093/jat/bkx09010.1093/jat/bkx09029186530Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo