1. bookVolume 68 (2018): Edizione 2 (June 2018)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Hydroxyapatite-ciprofloxacin delivery system: Synthesis, characterisation and antibacterial activity

Pubblicato online: 26 Apr 2018
Volume & Edizione: Volume 68 (2018) - Edizione 2 (June 2018)
Pagine: 129 - 144
Accettato: 09 Dec 2017
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. M. Panteli and P. V. Giannoudis, Chronic osteomyelitis: what the surgeon needs to know, Efort. Open Rev.1 (2016) 128–135; http://doi.org/10.1302/2058-5241.1.00001710.1302/2058-5241.1.000017536761228461939Search in Google Scholar

2. H. S. Fraimow, Systemic Antimicrobial Therapy in Osteomyelitis, Semin. Plast. Surg.23 (2009) 90–99; http://doi.org/10.1055/s-0029-121416110.1055/s-0029-1214161288490520567731Search in Google Scholar

3. D. Bamberger and S. Boyd, Management of Staphylococcus aureus infections, Am. Fam. Physician.72 (2005) 2474–2481.Search in Google Scholar

4. M. E. Olson and A. R. Horswill, Staphylococcus aureus osteomyelitis: bad to the bone, Cell Host Microbe13 (2013) 629–631; http://doi.org/10.1016/j.chom.2013.05.01510.1016/j.chom.2013.05.015373283423768487Search in Google Scholar

5. E. Goldstein, Systemic antibiotic therapy for chronic osteomyelitis in adults, Clin. Infect. Dis.54 (2012) 393–407; http://doi.org/10.1093/cid/cir84210.1093/cid/cir842349185522157324Search in Google Scholar

6. J. Kelm, T. Regitz, E. Schmitt, W. Jung and K. Anagnostakos, In vivo and in vitro studies of antibiotic release from and bacterial growth inhibition by antibiotic-impregnated polymethylmethacrylate hip spacers, Antimicrob. Agents Chemother.50 (2006) 332–335; http://doi.org/10.1128/AAC.50.1.332-335.200610.1128/AAC.50.1.332-335.2006134677316377705Search in Google Scholar

7. J. S. Gogia, J. P. Meehan, P. E. Cesare and A. A. Jamali, Local antibiotic therapy in osteomyelitis, Semin Plast Surg.23 (2009) 100–107; http://doi.org/10.1055/s-0029-121416210.1055/s-0029-1214162288490620567732Search in Google Scholar

8. O. S. Kluin, H. C. van der Mei, H. J. Busscher and D. Neut, Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis, Expert Opin. Drug Deliv.10 (2013) 341–351; http://doi.org/10.1517/17425247.2013.75137110.1517/17425247.2013.75137123289645Search in Google Scholar

9. W. Habraken, P. Habibovic, M. Epple and M. Bohner, Calcium phosphates in biomedical applications: materials for the future? Materials Today19 (2016) 69–87; http://doi.org/10.1016/j.mattod.2015.10.00810.1016/j.mattod.2015.10.008Search in Google Scholar

10. K. Uemura, A. Kanamori, K. Aoto, M. Yamazaki and M. Sakane, Novel unidirectional porous hydroxyapatite used as a bone substitute for open wedge high tibial osteotomy, J. Mater. Sci. Mater. Med.25 (2014) 2541–2547; http://doi.org/10.1007/s10856-014-5266-510.1007/s10856-014-5266-5419880924997164Search in Google Scholar

11. D. Neut, R. J. B. Dijkstra, J. I. Thompson, C. Kavanagh, H. C. van der Mei, and H. J. Busscher, A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses, Eur. Cell Mater.29 (2015) 42–56; http://doi.org/10.22203/eCM10.22203/eCMSearch in Google Scholar

12. G. Shazly and K. Mohsin, Dissolution improvement of solid self-emulsifying drug delivery systems of fenofibrate using an inorganic high surface adsorption material, Acta Pharm. 65 (2015) 29–42; http://doi.org/10.1515/acph-2015-000310.1515/acph-2015-0003Search in Google Scholar

13. G. Devanand Venkatasubbu, S. Ramasamy, V. Ramakrishnan and J. Kumar, Nanocrystalline hydroxyapatite and zinc doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin, 3 Biotech. 1 (2011) 173–186; http://doi.org/10.1007/s13205-011-0021-910.1007/s13205-011-0021-9Search in Google Scholar

14. D. P. Minh, N. D. Tran, A. Nzihou and P. Sharrock, One-step synthesis of calcium hydroxyapatite from calcium carbonate and orthophosphoric acid under moderate conditions, Ind. Eng. Chem. Res. 52 (2013) 1439–1447; http://doi.org/10.1021/ie302422d10.1021/ie302422dSearch in Google Scholar

15. A. Mocanu, R. Melinte, M. Popescu, C. V. Manda, O. Croitoru, J. Neamţu and M. V Bubulică, Synthesis and physico-chemical characterization of a hydroxyapatite-ciprofloxacin composite, Curr. Health Sci. J.40 (2014) 30–34.Search in Google Scholar

16. S. K. Padhyay, P. Kumar and V. Arora, Complexes of quinolone drugs norfloxacin and ciprofloxacin with alkaline earth metal perchlortes, J. Struct. Chem. 47 (2006) 1078–1083.10.1007/s10947-006-0428-zSearch in Google Scholar

17. J. Neamtu, M. V. Bubulica, A. Rotaru, C. Ducu, O. E. Balosache, V. C. Manda, A. Turcu-Stiolica, C. Nicolicescu, R. Melinte, M. Popescu and O. Croitoru, Hydroxyapatite-alendronate composite systems for biocompatible materials, J. Therm. Anal. Calorim.127 (2017) 1567–1582; http://doi.org/10.1007/s10973-016-5905-910.1007/s10973-016-5905-9Search in Google Scholar

18. M. J. Lukić, L. J. Veselinović, Z. Stojanović, M. Maček-Kržmanc, I. Bračko, S. D. Škapin, S. Marković and D. Uskoković, Peculiarities in sintering behavior of Ca-deficient hydroxyapatite nanopowders, Mater. Lett.68 (2012) 331–335; http://doi.org/10.1016/j.matlet.2011.10.08510.1016/j.matlet.2011.10.085Search in Google Scholar

19. I. Turel, N. Bukovec and E. Farkas, Complex formation between some metals and a quinolone family member (ciprofloxacin), Polyhedron15 (1996) 269–275; http://doi.org/10.1016/0277-5387(95)00231-G10.1016/0277-5387(95)00231-GSearch in Google Scholar

20. A. Destainville, E. Champion and D. Bernache-Assollante, Synthesis, characterization and thermal behaviour of apatite tricalcium phosphate, Mater. Chem. Phys.80 (2003) 269–277.10.1016/S0254-0584(02)00466-2Search in Google Scholar

21. I. Mobasherpour and M. Heshajin, Synthesis of nanocrystalline hydroxyapatite by using precipitation method, J. Alloys Compd.430 (2007) 330–333; http://doi.org/10.1016/j.jallcom.2006.05.01810.1016/j.jallcom.2006.05.018Search in Google Scholar

22. V. Uivarosi, Metal complexes of quinolone antibiotics and their applications: An update, Molecules18 (2013) 11153–11197; http://doi.org/10.3390/molecules18091115310.3390/molecules180911153626984824029748Search in Google Scholar

23. G. B. Deacon and R. J. Phillips, Relationships between the carbon-oxygen stretching frequencies of arboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev.33 (1980) 227–250; http://doi.org/10.1016/S0010-8545(00)80455-510.1016/S0010-8545(00)80455-5Search in Google Scholar

24. J. Barbosa, R. Berge´s, I. Toro and V. Sanz-Nebot, Protonation equilibria of quinolone antibacterials in acetonitrile-water mobile phases used in LC, Talanta44 (1997) 1271–1283; http://doi.org/10.1016/S0039-9140(96)02188-110.1016/S0039-9140(96)02188-1Search in Google Scholar

25. S. G. Kumar, R. Govindana and E. K. Girija, In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis, J. Mater. Chem. B2 (2014) 5052–5060; http://doi.org/10.1039/C4TB00339J10.1039/C4TB00339J32261838Search in Google Scholar

26. M. Rauschmann, T. Wichelaus, V. Stirnal, E. Dingeldein, L. Zichner, R. Schnettler and V. Alt, Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections, Biomater.26 (2005) 2677–2684; http://doi.org/10.1016/j.biomaterials.2004.06.04510.1016/j.biomaterials.2004.06.04515585271Search in Google Scholar

27. N. Rameshbabu, T. S. S. Kumar, T. G. Prabhakar, V. S. Sastry, K. V. Murty and K. P. Rao, Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization, J. Biomed. Mater. Res. A. 80 (2007) 581–591; http://doi.org/10.1002/jbm.a.3095810.1002/jbm.a.3095817031822Search in Google Scholar

28. W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim and Y. H. Park, Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol.74 (2008) 2171–2178.10.1128/AEM.02001-07229260018245232Search in Google Scholar

29. R. C. Li, D. E. Nix and J. J. Schentag, Interaction between ciprofloxacin and metal cations: Its influence on physicochemical characteristics and antibacterial activity, Pharm. Res.11 (1994) 917–920; http://doi.org/10.1023/A:101895453025010.1023/A:1018954530250Search in Google Scholar

30. A. Heijink, M. J. Yaszemski, R. Patel, M. S. Rouse, D. G. Lewallen and A. D. Hanssen, Local antibiotic delivery with OsteoSet, DBX, and Collagraft, Clin. Orthop. Relat. Res. 451 (2006) 29–33; http://doi.org/10.1097/01.blo.0000229319.45416.8110.1097/01.blo.0000229319.45416.8116906070Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo