1. bookVolume 63 (2013): Edizione 3 (September 2013)
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Methods of amorphization and investigation of the amorphous state

Pubblicato online: 22 Oct 2013
Volume & Edizione: Volume 63 (2013) - Edizione 3 (September 2013)
Pagine: 305 - 334
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno

1. B. C. Hancock and G. Zografi, Characteristics and significance of the amorphous state in pharmaceutical systems, J. Pharm. Sci. 86 (1997) 1-12; DOI: 10.1021/js9601896.10.1021/js9601896Search in Google Scholar

2. L. Yu, Amorphous pharmaceutical solids: preparation, characterization and stabilization, Adv. Drug Delivery Rev. 48 (2001) 27-42; DOI: 10.1016/S0169-409X(01)00098-9.10.1016/S0169-409X(01)00098-9Search in Google Scholar

3. G. L. Amidon, H. Lennernäs, V. P. Shah and J. R. Crison, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. 12 (1995) 413-420; DOI: 10.1023/A:1016212804288.10.1023/A:1016212804288Search in Google Scholar

4. P. Poole, T. Grande, C. Angell and P. McMillan, Polymorphic phase transitions in liquids and glasses, Science 275 (1997) 322-323; DOI: 10.1126/science.275.5298.322.10.1126/science.275.5298.322Search in Google Scholar

5. A. Saleki-Gerhardt, J. G. Stowell, S. R. Byrn and G. Zografi, Hydration and dehydration of crystalline and amorphous forms of raffinose, J. Pharm. 84 (1995) 318-323.Search in Google Scholar

6. L. R. L. Hilden and K. R. K. Morris, Physics of amorphous solids, J. Pharm. 93 (2003) 3-12; DOI: 10.1002/jps.10489.10.1002/jps.1048914648630Search in Google Scholar

7. K. A. Graeser, C. J. Strachan, J. E. Patterson, K. C. Gordon and T. Rades, Physicochemical properties and stability of two differently prepared amorphous forms of simvastatin, Cryst. GrowthDes. 8 (2008) 128-135; DOI: 10.1021/cg700913m.10.1021/cg700913mSearch in Google Scholar

8. P. Karmwar, K. Graeser, K. C. Gordon, C. J. Strachan and T. Rades, Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods, Int. J. Pharm. 417 (2011) 94-100; DOI: 10.1016/j.ijpharm.2010. in Google Scholar

9. M. Otsuka, J.-I. Nishizawa, N. Fukura and T. Sasaki, Characterization of poly-amorphous indomethacin by terahertz spectroscopy, J. Infrared Milli. Terahz. Waves 33 (2012) 953-962; DOI: 10. 1007/s10762-012-9910-1.10.1007/s10762-012-9910-1Search in Google Scholar

10. R. Lefort, A. De Gusseme, J. F. Willart, F. Danède and M. Descamps, Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: an application to ball- -milling of trehalose, Int. J. Pharm. 280 (2004) 209-219; DOI: 10.1016/j.ijpharm.2004. in Google Scholar

11. D. Kivelson, J. Pereda, K. Luu, M. Lee, H. Sakai, A. Ha, I. Cohen and G. Tarjus, Facts and speculation concerning low-temperature polymorphism in glass formers, Symp. Ser. 676 (1997), 224-232; DOI: 10.1021/bk-1997-0676.ch017.10.1021/bk-1997-0676.ch017Search in Google Scholar

12. J. E. Patterson, M. B. James, A. H. Forster, R. W. Lancaster, J. M. Butler and T. Rades, The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds, J. Pharm. Sci. 94 (2005) 1998-2012; DOI: 10.1002/jps.20424.10.1002/jps.20424Search in Google Scholar

13. D. Q. D. Craig, V. L. V. Kett, J. R. J. Murphy and D. M. D. Price, The measurement of small quantities of amorphous material-should we be considering the rigid amorphous fraction, Pharm. Res. 18 (2001) 1081-1082.10.1023/A:1010999615450Search in Google Scholar

14. D. Turnbull, Under what conditions can a glass be formed?, Contemp. Phys. 10 (1969) 473-488; DOI: 10.1080/00107516908204405.10.1080/00107516908204405Search in Google Scholar

15. C. Angell, Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit, J. Non-Cryst. Solids 102 (1988) 205-221; DOI: 10.1016/0022-3093(88)90133-0.10.1016/0022-3093(88)90133-0Search in Google Scholar

16. J. Liu, D. Rigsbee, C. Stotz and M. Pikal, Dynamics of pharmaceutical amorphous solids: The study of enthalpy relaxation by isothermal microcalorimetry, J. Pharm. Sci. 91 (2002) 1853-1862; DOI:10.1002/jps.10181.10.1002/jps.1018112115812Search in Google Scholar

17. D. Grant, Polymorphism in Pharmaceutical Solids, Marcel Dekker, Basel 1999, pp. 183-227.Search in Google Scholar

18. K. A. Graeser, J. E. Patterson, J. A. Zeitler, K. C. Gordon and T. Rades, Correlating thermodynamic and kinetic parameters with amorphous stability, Eur. J. Pharm. Sci. 37 (2009) 492-498; DOI: 10.1016/j.ejps.2009. in Google Scholar

19. J. W. Lee, L. C. Thomas and S. J. Schmidt, Effects of heating conditions on the glass transition parameters of amorphous sucrose produced by melt-quenching, J. Agric. Food Chem. 59 (2011) 3311-3319; DOI: 10.1021/jf104853s.10.1021/jf104853s21381719Search in Google Scholar

20. H. Miyanishi, T. Nemoto, M. Mizuno, H. Mimura, S. Kitamura, Y. Iwao, S. Noguchi and S. Itai, Evaluation of crystallization behavior on the surface of nifedipine solid dispersion powder using inverse gas chromatography, Pharm. Res. 30 (2013) 502-511; DOI: 10.1007/s11095-012-0896-0.10.1007/s11095-012-0896-023104579Search in Google Scholar

21. M. G. Abiad, D. C. Gonzalez, B. Mert, O. H. Campanella and M. T. Carvajal, A novel method to measure the glass and melting transitions of pharmaceutical powders, Int. J. Pharm. 396 (2010) 23-29; DOI: 10.1016/j.ijpharm.2010. in Google Scholar

22. H. Takeuchi, S. Nagira, H. Yamamoto and Y. Kawashima, Solid dispersion particles of tolbutamide prepared with fine silica particles by the spray-drying method, Powder Technol. 141 (2004) 187-195; DOI: 10.1016/j,powtec.2004.03.007.Search in Google Scholar

23. R. C. Rowe, P. J. Sheskey, W. G. Cook and M. F. Fenton, Colloidal Silicon Dioxide, in Handbook ofPharmaceutical Excipients, Pharmaceutical Press, London 2000, pp. 143-145.Search in Google Scholar

24. H. Takeuchi, T. Handa and Y. Kawashima, Spherical solid dispersion containing amorphous tolbutamide embedded in enteric coating polymers or colloidal silica prepared by spray-drying technique, Chem. Pharm. Bull. 35 (1987) 3800-3806.10.1248/cpb.35.38002830037Search in Google Scholar

25. I. Chuang and G. Maciel, Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics, J. Am. Chem. Soc. 118 (1996) 401-406; DOI: 10.1021/ja951550d.10.1021/ja951550dSearch in Google Scholar

26. J. Broadhead, S. K. E. Rouan and C. T. Rhodes, The spray drying of pharmaceuticals, Drug. Dev. Ind. Pharm. 18 (1992) 11-12; DOI: 10.3109/03639049209046327.10.3109/03639049209046327Search in Google Scholar

27. R. Vehring, Pharmaceutical particle engineering via spray drying, Pharm. Res. 25 (2008) 999-1022; DOI: 10.1007/s11095-007-9475-1.10.1007/s11095-007-9475-1Search in Google Scholar

28. K. Haque and Y. H. Roos, Crystallization and X-ray diffraction of spray-dried and freeze-dried amorphous lactose, Carbohyd. Res. 340 (2005) 293-301; DOI: 10.1016/j.carres.2004. in Google Scholar

29. D. Chiou, T. A. G. Langrish and R. Braham, The effect of temperature on the crystallinity of lactose powders produced by spray drying, J. Food Eng. 86 288-293; DOI: 10.1016/j.jfoodeng.2007. 10.005.Search in Google Scholar

30. S. P. Bhardwaj, K. K. Arora, E. Kwong, A. Templeton, S. D. Clas and R. Suryanarayanan, Correlation between molecular mobility and physical stability of amorphous itraconazole, Mol. Pharm. 10 (2013) 694-700; DOI: 10.1021/mp300487u.10.1021/mp300487uSearch in Google Scholar

31. M. Vogt, K. Kunath and J. B. Dressman, Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations, Eur. J. Pharm. Biopharm. 68 (2008) 283-288; DOI: 10.1016/j.ejpb.2007. in Google Scholar

32. D. Q. Craig, P. G. Royall, V. L. Kett and M. L. Hopton, The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems, Int. J. Pharm. 179 (1999) 179-207; DOI: 10.1016/S0378-5173(98)00338-X.10.1016/S0378-5173(98)00338-XSearch in Google Scholar

33. J. Liu, Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: techniques and applications in freeze-drying development, Pharm. Dev. Technol. 11 (2006) 3-28; DOI: 10.1080/10837450500463729.10.1080/1083745050046372916544906Search in Google Scholar

34. S. P. Bhardwaj and R. Suryanarayanan, Molecular mobility as an effective predictor of the physical stability of amorphous trehalose, Mol. Pharm. 9 (2012) 3209-3217; DOI: 10.1021/mp300302g.10.1021/mp300302g23003337Search in Google Scholar

35. K. P. O’Donnell, Z. Cai, P. Schmerler and R. O. I. Williams, Atmospheric freeze drying for the reduction of powder electrostatics of amorphous, low density, high surface area pharmaceutical powders, Drug Dev. Ind. Pharm. 39 (2013) 205-217; DOI: 10.3109/03639045.2012.669385.10.3109/03639045.2012.66938522612245Search in Google Scholar

36. Y. Li, J. Han, G. G. Zhang, D. J. Grant and R. Suryanarayanan, In situ dehydration of carbamazepine dihydrate: a novel technique to prepare amorphous anhydrous carbamazepine, Pharm. Dev. Technol. 5 (2000) 257-266; DOI: 10.1081/PDT-100100540.10.1081/PDT-100100540Search in Google Scholar

37. F. Sussich and A. Cesaro, Trehalose amorphization and recrystallization, Carboh. Res. 343 2667-2674; DOI: 10.1016/j.carres.2008. in Google Scholar

38. B. Bennett and G. Cole, Secondary Pharmaceutical Production: An Engineering Guide, IChemE 2003, pp. 111-201.Search in Google Scholar

39. D. M. Parikh, Handbook of Pharmaceutical Granuation Technology, Taylor and Francis, London 2005, pp. 491-512.10.1201/9780849354953Search in Google Scholar

40. R. Liu, Water-InsolubleDrug Formulation, Taylor and Francis, London 2008, pp. 88-455.10.1201/9781420009552Search in Google Scholar

41. R. Price and P. M. Young, On the physical transformations of processed pharmaceutical solids, Micron. 36 (2005) 519-524; DOI: 10.1016/j.micron.2005. in Google Scholar

42. G. Zhang, C. Gu, M. Zell, R. Burkhardt, E. Munson and D. Grant, Crystallization and transitions of sulfamerazine polymorphs, J. Pharm. Sci. 91 (2002) 1089-1100; DOI: 10.1002/jps.10100.10.1002/jps.1010011948548Search in Google Scholar

43. P. Thanatuksorn, K. Kawai, K. Kajiwara and T. Suzuki, Effects of ball-milling on the glass transition of wheat flour constituents, J. Sci. Food Agric. 89 (2009) 430-435; DOI: 10.1002/jsfa.3463.10.1002/jsfa.3463Search in Google Scholar

44. J. F. Willart and M. Descamps, Solid state amorphization of pharmaceuticals, Mol. Pharmaceutics5 (2008) 905-920; DOI: 10.1021/mp800092t.10.1021/mp800092t18954076Search in Google Scholar

45. A. Revesz, Melting behavior and origin of strain in ball-milled nanocrystalline Al powders, J. Mater. Sci. 40 (2005) 1643-1646; DOI: 10.1007/s10853-005-0664-1.10.1007/s10853-005-0664-1Search in Google Scholar

46. S. Karki, T. Friscic, W. Jones and W. D. S. Motherwell, Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding, Mol. Pharmaceutics 4 (2007) 347-354; DOI: 10. 1021/mp0700054.10.1021/mp070005417497885Search in Google Scholar

47. K. Chadwick, R. Davey and W. Cross, How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine, CrystEngComm 9 (2007) 732-734; DOI: 10.1039/ b709411f.10.1039/b709411fSearch in Google Scholar

48. T. Shakhtshneider, Phase transformations and stabilization of metastable states of molecular crystals under mechanical activation, Solid State Ionics 101 (1997) 851-856; DOI: 10.1016/S0167-2738(97)00224-5.10.1016/S0167-2738(97)00224-5Search in Google Scholar

49. E. Dudognon, J. Willart, V. Caron, F. Capet, T. Larsson and M. Descamps, Formation of budesonide/ alpha-lactose glass solutions by ball-milling, Solid State Commun. 138 (2006) 68-71; DOI: 10.1016/j.ssc.2006. in Google Scholar

50. I. Tsukushi, O. Yamamuro and T. Matsuo, Solid state amorphization of organic molecular crystals using a vibrating mill, Solid State Commun. 94 (1995) 1013-1013; DOI: 10.1016/0038-1098 (95)00161-1.Search in Google Scholar

51. J. Font, J. Muntasell and E. Cesari, Amorphization of organic compounds by ball milling, Mater. Res. Bull. 32 (1997) 1691-1696; DOI: 10.1016/S0025-5408(97)00162-1.10.1016/S0025-5408(97)00162-1Search in Google Scholar

52. J. Willart, V. Caron, R. Lefort, F. Danède, D. Prevost and M. Descamps, Athermal character of the solid state amorphization of lactose induced by ball milling, Solid State Commun. 132 (2004) 693-696; DOI: 10.1016/j.ssc.2004. in Google Scholar

53. M. Otsuka, H. Ohtani, N. Kaneniwa and S. Higuchi, Isomerization of lactose in solid-state by mechanical stress during grinding, J. Pharm. Pharmacol. 43 (1991) 148-153; DOI: 10.1111/j.2042-7158.1991.tb06656.x.10.1111/j.2042-7158.1991.tb06656.xSearch in Google Scholar

54. J. Willart, A. De Gusseme, S. Hemon, G. Odou, F. Danède and M. Descamps, Direct crystal to glass transformation of trehalose induced by ball milling, Solid State Commun. 119 (2001) 501-505; DOI: 10.1016/S0038-1098(01)00283-6.10.1016/S0038-1098(01)00283-6Search in Google Scholar

55. A. J. Megarry, J. Booth and J. Burley, Amorphous trehalose dihydrate by cryogenic milling, Carbohyd. Res. 346 (2011) 1061-1064; DOI: 10.1016/j.carres.2011. in Google Scholar

56. J. F. Willart, N. Dujardin, E. Dudognon, F. Danède and M. Descamps, Amorphization of sugar hydrates upon milling, Carbohyd. Res. 345 (2010) 1613-1616; DOI: 10.1016/j.carres.2010. in Google Scholar

57. P. Okamoto and N. Lam, Physics of crystal-to-glass transformations, Solid State Phys. 52 (1999) 1-135; DOI: 10.1016/S0081-1947(08)60018-1.10.1016/S0081-1947(08)60018-1Search in Google Scholar

58. H. Fecht, Defect-induced melting and solid-state amorphization, Nature 356 (1992) 133-135; DOI: 10.1016/S0081-1947(08)60018-1.10.1016/S0081-1947(08)60018-1Search in Google Scholar

59. M. Descamps, J. F. Willart, E. Dudognon and V. Caron, Transformation of pharmaceutical compounds upon milling and comilling: the role of Tg, J. Pharm. Sci. 96 (2007) 1398-1407; DOI: 10. 1002/jps.20939.10.1002/jps.20939Search in Google Scholar

60. J. Willart, N. Descamps, V. Caron, F. Capet, F. Danède and M. Descamps, Formation of lactose- -mannitol molecular alloys by solid state vitrification, Solid State Commun. 138 (2006) 194-199; DOI: 10.1016/j.ssc.2006. in Google Scholar

61. G. Martin and P. Bellon, Driven alloys, Solid State Phys. 50 (1997) 189-331.10.1016/S0081-1947(08)60605-0Search in Google Scholar

62. S. Qi, I. Weuts, S. De Cort, S. Stokbroekx, R. Leemans, M. Reading, P. Belton and D. Q. M. Craig, An investigation into the crystallisation behaviour of an amorphous cryomilled pharmaceutical material above and below the glass transition temperature, J. Pharm. Sci. 99 (2010) 196-208; DOI: 10.1002/jps.21811.10.1002/jps.21811Search in Google Scholar

63. K. J. Crowley and G. Zografi, Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability, J. Pharm. Sci. 91 (2002) 492-507; DOI: 10.1002/jps.10028.10.1002/jps.10028Search in Google Scholar

64. J. Carstensen, Advanced Pharmaceutical Solids, Marcel Dekker, New York 2001, pp. 107-117.10.1201/b16941Search in Google Scholar

65. C. Sun and D. J. Grant, Influence of crystal shape on the tableting performance of L-lysine monohydrochloride dihydrate, J. Pharm. Sci. 90 (2001) 569-579; DOI: 10.1002/1520-6017(200105)90: 5<569::AID-JPS1013>3.0.CO;2-4.Search in Google Scholar

66. V. Chikhalia, R. T. Forbes, R. A. Storey and M. Ticehurst, The effect of crystal morphology and mill type on milling induced crystal disorder, Eur. J. Pharm. Sci. 27 (2006) 19-26; DOI: 10.1016/ j.ejps.2005. in Google Scholar

67. T. Watanabe, S. Hasegawa, N. Wakiyama, A. Kusai and M. Senna, Comparison between polyvinylpyrrolidone and silica nanoparticles as carriers for indomethacin in a solid state dispersion, Int. J. Pharm. 250 (2003) 283-286; DOI: 10.1016/S0378-5173(02)00549-5.10.1016/S0378-5173(02)00549-5Search in Google Scholar

68. A. Ali, K. Yamamoto, A. Elsayed, F. Habib and Y. Nakai, Molecular behavior of flufenamic acid in physical and ground mixtures with florite, Chem. Pharm. Bull. 40 (1992) 1289-1294.10.1248/cpb.40.1289Search in Google Scholar

69. H. Sekizaki, K. Danjo, H. Eguchi, Y. Yonezawa, H. Sunada and A. Otsuka, Solid-state interaction of ibuprofen with polyvinylpyrrolidone, Chem. Pharm. Bull. 43 (1995) 988-993.10.1248/cpb.43.988Search in Google Scholar

70. V. Boldyrev, T. Shakhtshneider, L. Burleva and V. Severstev, Preparation of the disperse systems of sulfathiazole-polyvinylpyrrolidone by mechanical activation, Drug Dev. Ind. Pharm. 20 (1994) 1103-1114.10.3109/03639049409038355Search in Google Scholar

71. N. Kaneniwa and A. Ikekava, Solubilization of Water-insoluble organic powders by ball-milling in the presence of polyvinylpyrrolidone, Chem. Pharm. Bull. 23 (1975) 2973-2986.10.1248/cpb.23.2973Search in Google Scholar

72. N. Kaneniwa, A. Ikekava and M. Sumi, A decrease in crystallinity of amobarbital by mechanical treatment in presence of diluents, Chem. Pharm. Bull. 26 (1978) 2734-2743.10.1248/cpb.26.2734Search in Google Scholar

73. H. Takeuchi, S. Nagira, H. Yamamoto and Y. Kawashima, Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method, Int. J. Pharm. 293 (2005) 155-164; DOI: 10.1016/j.ijpharm.2004. in Google Scholar

74. M. Fujii, H. Okada, Y. Shibata, H. Teramachi, M. Kondoh and Y. Watanabe, Preparation, characterization, and tableting of a solid dispersion of indomethacin with crospovidone, Int. J. Pharm.293 (2005) 145-153; DOI: 10.1016/j.ijpharm.2004. in Google Scholar

75. Y. Nakai, E. Fukuoka, S. Nakajima and Y. Iida, Effect of grinding on physical and chemical properties of crystalline medicinals with microcrystalline cellulose. 2. Retention of volatile medicinals in ground mixture, Chem. Pharm. Bull. 26 (1978) 2983-2989.10.1248/cpb.26.2983Search in Google Scholar

76. M. Cirri, F. Maestrelli, S. Furlanetto and P. Mura, Solid-state characterization of glyburide-cyclodextrin co-ground products, J. Therm. Anal. Calorim. 77 (2004) 413-422; DOI: 10.1023/B: JTAN.0000038982.40315.8f.Search in Google Scholar

77. T. Shakhtshneider, M. Vasiltchenko, A. Politov and V. Boldyrev, The mechanochemical preparation of solid disperse systems of ibuprofen-polyethylene glycol, Int. J. Pharm. 130 (1996) 25-32; DOI: 10.1016/0378-5173(95)04244-X.10.1016/0378-5173(95)04244-XSearch in Google Scholar

78. D. Bahl and R. H. Bogner, Amorphization of indomethacin by co-grinding with Neusilin US2: Amorphization kinetics, physical stability and mechanism, Pharm. Res. 23 (2006) 2317-2325; DOI: 10.1007/s11095-006-9062-x.10.1007/s11095-006-9062-x16927179Search in Google Scholar

79. U. Zimper, J. Aaltonen, C. M. McGoverin, K. C. Gordon, K. Krauel-Goellner and T. Rades, Quantification of process induced disorder in milled samples using different analytical techniques, Pharmaceutics 2 (2010) 30-49; DOI: 10.3390/pharmaceutics2010030.10.3390/pharmaceutics2010030396834727721341Search in Google Scholar

80. V. Caron, J. F. Willart, R. Lefort, P. Derollez, F. Danède and M. Descamps, Solid state amorphization kinetic of alpha lactose upon mechanical milling, Carbohyd. Res. 346 (2011) 2622-2628; DOI: 10.1016/j.carres.2011. in Google Scholar

81. J. P. Bøtker, P. Karmwar, C. J. Strachan, C. Cornett, F. Tian, Z. Zujovic, J. Rantanen and T. Rades, Assessment of crystalline disorder in cryo-milled samples of indomethacin using atomic pair- -wise distribution functions, Int. J. Pharm. 417 (2011) 112-119; DOI: 10.1016/j.ijpharm.2010.12. 018.Search in Google Scholar

82. K. Terada, H. Kitano, Y. Yoshihashi and E. Yonemochi, Quantitative correlation between initial dissolution rate and heat of solution of drug, Pharm. Res. 17 (2000) 920-924; DOI: 10.1023/A: 1007514902161Search in Google Scholar

83. Z. Lavrič, J. Pirnat, J. Lužnik, J. Seliger, V. Žagar, Z. Trontelj and S. Srcic, Application of 14N NQR to the study of piroxicam polymorphism, J. Pharm. Sci. 99 (2010) 4857-4865; DOI: 10.1002/ jps.22186.10.1002/jps.22186Search in Google Scholar

84. C. J. Strachan, T. Rades and K. C. Gordon, A theoretical and spectroscopic study of gamma- -crystalline and amorphous indomethacin, J. Pharm. Pharmacol. 59 (2007) 261-269; DOI: 10.1211/ jpp.59.2.0012.10.1211/jpp.59.2.0012Search in Google Scholar

85. M. Savolainen, A. Heinz, C. Strachan, K. C. Gordon, J. Yliruusi, T. Rades and N. Sandler, Screening for differences in the amorphous state of indomethacin using multivariate visualization, Eur. J. Pharm. Sci. 30 (2007) 113-123; DOI: 10.1016/j.ejps.2006. in Google Scholar

86. C. Rawle, C. Lee, C. Strachan, K. Payne, P. Manson and T. Rades, Towards characterization and identification of solid state pharmaceutical mixtures through second harmonic generation, J. Pharm. Sci. 95 (2006) 761-768; DOI: 10.1002/jps.20575.10.1002/jps.20575Search in Google Scholar

87. G. G. Buckton and P. P. Darcy, Assessment of disorder in crystalline powders - a review of analytical techniques and their application, Int. J. Pharm. 179 (1999) 141-158; DOI: 10.1016/S0378-5173(98)00335-4.10.1016/S0378-5173(98)00335-4Search in Google Scholar

88. B. Shah, V. K. Kakumanu and A. K. Bansal, Analytical techniques for quantification of amorphous/ crystalline phases in pharmaceutical solids, J. Pharm. Sci. 95 (2006) 1641-1665; DOI: 10. 1002/jps.20644.10.1002/jps.20644Search in Google Scholar

89. N. Chieng, Z. Zujovic, G. Bowmaker, T. Rades and D. Saville, Effect of milling conditions on the solid-state conversion of ranitidine hydrochloride form 1, Int. J. Pharm. 327 (2006) 36-44; DOI: 10.1016/j.ijpharm.2006. in Google Scholar

90. C. Gustafsson, H. Lennholm, T. Iversen and C. Nyström, Comparison of solid-state NMR and isothermal microcalorimetry in the assessment of the amorphous component of lactose, Int. J. Pharm. 174 (1998) 243-252; DOI: 10.1016/S0378-5173(98)00272-5.10.1016/S0378-5173(98)00272-5Search in Google Scholar

91. M. Mirmehrabi, S. Rohani, K. S. K. Murthy and B. Radatus, Characterization of tautomeric forms of ranitidine hydrochloride: thermal analysis, solid-state NMR, X-ray, J. Cryst. Growth 260 (2004) 517-526; DOI: 10.1016/j.jcrysgro.2003. in Google Scholar

92. D. C. Apperley, R. A. Fletton, R. K. Harris, R. W. Lancaster, S. Tavener and T. L. Threlfall, Sulfathiazole polymorphism studied by magic-angle spinning NMR, J. Pharm. Sci. 88 (1999) 1275-1280; DOI: 10.1021/js990175a.10.1021/js990175aSearch in Google Scholar

93. D. C. Apperley, R. K. Harris, T. Larsson and T. Malmstrom, Quantitative nuclear magnetic resonance analysis of solid formoterol fumarate and its dihydrate, J. Pharm. Sci. 92 (2003) 2487-2494; DOI: 10.1002/jps.10500.10.1002/jps.10500Search in Google Scholar

94. P. A. Tishmack, D. E. Bugay and S. R. Byrn, Solid-state nuclear magnetic resonance spectroscopy- pharmaceutical applications, J. Pharm. Sci. 92 (2003) 441-474; DOI: 10.1002/jps.10307.10.1002/jps.10307Search in Google Scholar

95. A. Gombás, I. Antal, P. Szabó-Révész, S. Marton and I. Erõs, Quantitative determination of crystallinity of alpha-lactose monohydrate by near Infrared Spectroscopy (NIRS), Int. J. Pharm. 256 (2003) 25-32; DOI: 10.1016/S0378-5173(03)00059-0.10.1016/S0378-5173(03)00059-0Search in Google Scholar

96. P. Debenedetti, Metastable Liquids: Concepts and Principles, Princeton University Press, Chichester 1996.10.1515/9780691213941Search in Google Scholar

97. G. P. Johari, S. Ram, G. Astl and E. Mayer, Characterizing amorphous and microcrystalline solids by calorimetry, J. Non-Cryst Solids 116 (1990) 282-285; DOI: 10.1016/0022-3093(90)90703-O.10.1016/0022-3093(90)90703-OSearch in Google Scholar

98. S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley and A. Newman, Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns, Pharm. Res. 23 (2006) 2333-2349; DOI: 10.1007/s11095-006-9086-2.10.1007/s11095-006-9086-2Search in Google Scholar

99. S. J. L. Billinge and M. G. Kanatzidis, Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions, Chem. Commun. 7 (2004) 749-760; DOI: 10.1039/b309577k..Search in Google Scholar

100. A. S. Masadeh, E. S. Bozin, C. L. Farrow, G. Paglia, P. Juhas, S. J. L. Billinge, A. Karkamkar and M. G. Kanatzidis, Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis, Phys. Rev. B 76 (2007); DOI: 10. 1103/PhysRevB.76.115413.Search in Google Scholar

101. T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks, Pergamon Press, Oxford 2003, pp. 25-101.10.1016/S1369-7021(03)00635-7Search in Google Scholar

102. T. Proffen, S. Billinge, T. Egami and D. Louca, Structural analysis of complex materials using the atomic pair distribution function - a practical guide, Z. Kristallogr. 218 (2003) 132-143; DOI: 10.1524/zkri. in Google Scholar

103. L. Tarasov and B. E. Warren, X-ray diffraction study of liquid sodium, J. Chem. Phys. 4 (1936) 236-238; DOI: 10.1063/1.1749828.10.1063/1.1749828Search in Google Scholar

104. B. Warren, H. Krutter and O. Morningstar, Fourier-analysis of X-ray-patterns of vitreous SiO2 and B2O3, J. Am. Ceram. Soc. 75 (1992) 11-15.10.1111/j.1151-2916.1992.tb05433.xSearch in Google Scholar

105. F. Zernike and J. A. Prins, Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung, Z. Physik 41 (1927) 184-194; DOI: 10.1007/BF01391926.10.1007/BF01391926Search in Google Scholar

106. F. Atassi, C. Mao, A. S. Masadeh and S. R. Byrn, Solid-state characterization of amorphous and mesomorphous calcium ketoprofen, J. Pharm. Sci. 99 (2009) 3684-3697; DOI: 10.1002/jps.21925.10.1002/jps.2192519780126Search in Google Scholar

107. S. Bates, R. C. Kelly, I. Ivanisevic, P. Schields, G. Zografi and A. W. Newman, Assessment of defects and amorphous structure produced in raffinose pentahydrate upon dehydration, J. Pharm. Sci. 96 (2007) 1418-1433; DOI: 10.1002/jps.20944.10.1002/jps.2094417455351Search in Google Scholar

108. A. Heinz, C. J. Strachan, F. Atassi, K. C. Gordon and T. Rades, Characterizing an amorphous system exhibiting trace crystallinity: A case study with saquinavir, Crys. Growth Des. 8 (2008) 119-127; DOI: 10.1021/cg700912q.10.1021/cg700912qSearch in Google Scholar

109. A. Sheth, S. Bates, F. Muller and D. Grant, Polymorphism in piroxicam, Cryst. Growth Des. 4 (2004) 1091-1098; DOI: 10.1021/cg049876y.10.1021/cg049876ySearch in Google Scholar

110. A. Sheth, S. Bates, F. Muller and D. Grant, Local structure in amorphous phases of piroxicam from powder X-ray diffractometry, Cryst. Growth Des. 5 (2005) 571-578; DOI: 10.1021/cg049757i.10.1021/cg049757iSearch in Google Scholar

111. M. D. Moore, A. M. Steinbach, I. S. Buckner and P. L. Wildfong, A structural investigation into the compaction behavior of pharmaceutical composites using powder X-ray diffraction and total scattering analysis, Pharm. Res. 26 (2009) 2429-2437; DOI: 10.1007/s11095-009-9954-7.10.1007/s11095-009-9954-719714452Search in Google Scholar

112. A. Newman, D. Engers, S. Bates, I. Ivanisevic, R. C. Kelly and G. Zografi, Characterization of amorphous API: Polymer mixtures using X-ray powder diffraction, J. Pharm. Sci. 97 (2008) 4840-4856; DOI: 10.1002/jps.21352.10.1002/jps.2135218351626Search in Google Scholar

113. K. Nollenberger, A. Gryczke, C. Meier, J. Dressman, M. U. Schmidt and S. Brühne, Pair distribution function X-ray analysis explains dissolution characteristics of felodipine melt extrusion products, J. Pharm. Sci. 98 (2009) 1476-1486; DOI: 10.1002/jps.21534.10.1002/jps.2153418752290Search in Google Scholar

114. P. Robinson, HyperDSC, Speed DSC Technique, ESTAC8 Abstract Book, Barcelona (August 25-29, 2002), p. 101.Search in Google Scholar

115. Y. Roos, Melting and glass transitions of low molecular weight carbohydrates, Carbohyd. Res.238 (1993) 39-48; DOI: 10.1016/0008-6215(93)87004-C.10.1016/0008-6215(93)87004-CSearch in Google Scholar

116. M. Brown, Introduction to Thermal Analysis: Techniques and Applications, Kluwer Academic Publishers, Amsterdam 2001.Search in Google Scholar

117. Perkin Elmer, Thermal Analysis Newsletter, Application Example PETAN-51, Norwalk 2000.Search in Google Scholar

118. P. Claudy, M. Siniti and J. El Hajri, Thermodynamic study of the glass relaxation phenomena - DSC study of annealing of maltitol glass, J. Therm. Anal. Calorim. 68 (2002) 251-264.10.1023/A:1014973719280Search in Google Scholar

119. M. J. Pikal, A. L. Lukes, J. E. Lang and K. Gaines, Quantitative crystallinity determinations for b-lactam antibiotics by solution calorimetry: Correlations with stability, J. Pharm. Sci. 67 (1978) 767-773; DOI: 10.1002/jps.2600670609.10.1002/jps.2600670609Search in Google Scholar

120. D. Gao and J. Rytting, Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients, Int. J. Pharm. 151 (1997) 183-192; DOI: 10.1016/S0378-5173(97)04895-3.10.1016/S0378-5173(97)04895-3Search in Google Scholar

121. S. E. Hogan and G. Buckton, The quantification of small degrees of disorder in lactose using solution calorimetry, Int. J. Pharm. 207 (2000) 57-64; DOI: 10.1016/S0378-5173(00)00527-5.10.1016/S0378-5173(00)00527-5Search in Google Scholar

122. K. C. Thompson, J. P. Draper, M. J. Kaufman and G. S. Brenner, Characterization of the crystallinity of drugs: B02669, a case study, Pharm. Res. 11 (1994) 1362-1365; DOI: 10.1023/A:101 8919201058.Search in Google Scholar

123. G. H. Ward and R. K. Schultz, Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability, Pharm. Res. 12 (1995) 773-779; DOI: 10.1023/A:1016232230 638.Search in Google Scholar

124. P. Harjunen, V. P. Lehto, M. Koivisto, E. Levonen, P. Paronen and K. Järvinen, Determination of amorphous content of lactose samples by solution calorimetry, Drug Dev. Ind. Pharm. 30 (2004) 809-815; DOI: 10.1081/DDC-200030302.10.1081/DDC-200030302Search in Google Scholar

125. R. W. Douglas and G. A. Jones, An apparatus for the determination of small changes in density, J. Sci. Instrum. 24 (1947) 72; DOI: 10.1088/0950-7671/24/3/304.10.1088/0950-7671/24/3/304Search in Google Scholar

126. J. Pelsmaekers and S. Amelinckx, Simple apparatus for comparative density measurements, Rev. Sci. Instr. 32 (1961) 828-830; DOI: 10.1063/1.1717522.10.1063/1.1717522Search in Google Scholar

127. R. Suryanarayanan, Evaluation of two concepts of crystallinity using calcium gluceptate as a model compound, Int. J. Pharm. 24 (1985) 1-17; DOI: 10.1016/0378-5173(85)90140-1.10.1016/0378-5173(85)90140-1Search in Google Scholar

128. G. M. Venkatesh, M. E. Barnett, C. Owusu-Fordjour and M. Galop, Detection of low levels of the amorphous phase in crystalline pharmaceutical materials by thermally stimulated current spectrometry, Pharm. Res. 18 (2001) 98-103, DOI: 10.1023/A:1011087012826.10.1023/A:1011087012826Search in Google Scholar

129. R. Huttenrauch, Molecular galenics as the basis of modern drug formation, Acta Pharm. Technol. (Suppl.) 6 (1978) 55-127.Search in Google Scholar

130. A. Salekigerhardt, C. Ahlneck and G. Zografi, Assessment of disorder in crystalline solids, Int. J. Pharm. 101 (1994) 237-247; DOI: 10.1016/0378-5173(94)90219-4.10.1016/0378-5173(94)90219-4Search in Google Scholar

131. P. M. Young, H. Chiou, T. Tee, D. Traini, H.-K. Chan, F. Thielmann and D. Burnett, The use of organic vapor sorption to determine low levels of amorphous content in processed pharmaceutical powders, Drug Dev. Ind. Pharm. 33 (2007) 91-97; DOI: 10.1080/03639040600969991.10.1080/03639040600969991Search in Google Scholar

132. J. Vollenbroek, G. A. Hebbink, S. Ziffels and H. Steckel, Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms, Int. J. Pharm. 395 (2010) 62-70; DOI: 10.1016/j.ijpharm.2010. in Google Scholar

133. M. Kunaver, J. Zadnik and O. Planinsek, Inverse gas chromatography-A different approach to characterization of solids and liquids, Acta Chim. Slov. 51 (2004) 373-394.Search in Google Scholar

134. A. Voelkel, B. Strzemiecka, K. Adamska and K. Milczewska, Inverse gas chromatography as a source of physicochemical data, J. Chromatogr. A 1216 (2009) 1551-1566; DOI: 10.1016/j.chroma. 2008.10.096.Search in Google Scholar

135. S. P. Chamarthy and R. Pinal, The nature of crystal disorder in milled pharmaceutical materials, Colloid. Surfaces A 331 (2008) 68-75; DOI: 10.1016/j.colsurfa.2008. in Google Scholar

136. O. Planinsek, J. Zadnik, M. Kunaver, S. Srcic and A. Godec, Structural evolution of indomethacin particles upon milling: time-resolved quantification and localization of disordered structure studied by IGC and DSC, J. Pharm. Sci. 99 (2010) 1968-1981; DOI: 10.1002/jps.21986.10.1002/jps.21986Search in Google Scholar

137. M. Otsuka and N. Kaneniwa, Effect of environment on crystallinity and chemical stability in solid-state of ground cephalotin sodium during storage, Drug Dev. Ind. Pharm. 17 (1990) 909-918; DOI: 10.3109/03639049109040828.10.3109/03639049109040828Search in Google Scholar

138. H. Konno and L. S. Taylor, Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine, J. Pharm. Sci. 95 (2006) 2692-2705; DOI: 10.1002/ jps.20697.10.1002/jps.20697Search in Google Scholar

139. X. C. Tang, M. J. Pikal and L. S. Taylor, The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers, Pharm. Res. 19 (2002) 484-490; DOI: 10.1023/A:1015199713635.10.1023/A:1015199713635Search in Google Scholar

140. L. Mackin, S. Sartnurak, I. Thomas and S. Moore, The impact of low levels of amorphous material, Int. J. Pharm. 231 (2002) 213-226; DOI: 10.1016/S0378-5173(01)00880-8.10.1016/S0378-5173(01)00880-8Search in Google Scholar

141. J. J. Seyer, P. E. Luner and M. S. Kemper, Application of diffuse reflectance near-infrared spectroscopy for determination of crystallinity, J. Pharm. Sci. 89 (2000) 1305-1316; DOI: 10.1002/ 1520-6017(200010)89:10<1305::AID-JPS8>3.0.CO;2-Q.10.1002/1520-6017(200010)89:10<1305::AID-JPS8>3.3.CO;2-HSearch in Google Scholar

142. S. J. Bai, M. Rani, R. Suryanarayanan, J. F. Carpenter, R. Nayar and M. C. Manning, Quantification of glycine crystallinity by near-infrared (NIR) spectroscopy, J. Pharm. Sci. 93 (2004) 2439-2447; DOI:10.1002/jps.20153.10.1002/jps.20153Search in Google Scholar

143. P. Aldridge, C. Evans, H. Ward, S. Colgan, N. Boyer and P. Gemperline, Near-IR detection of polymorphism and process-related substances, Anal. Chem. 68 (1996) 997-1002; DOI: 10.1021/ ac950993x.10.1021/ac950993xSearch in Google Scholar

144. S. Hogan and G. Buckton, The application of near infrared spectroscopy and dynamic vapor sorption to quantify low amorphous contents of crystalline lactose, Pharm. Res. 18 (2001) 112-116; DOI: 10.1023/A:1011091113734.10.1023/A:1011091113734Search in Google Scholar

145. G. Buckton, E. Yonemochi, J. Hammond and A. Moffat, The use of near infra-red spectroscopy to detect changes in the form of amorphous and crystalline lactose, Int. J. Pharm. 168 (1998) 231-241; DOI: 10.1016/S0378-5173(98)00095-7.10.1016/S0378-5173(98)00095-7Search in Google Scholar

146. M. Otsuka and H. Tanabe, Stability test for amorphous materials in humidity controlled 96- -well plates by near-infrared spectroscopy, Drug Dev. Ind. Pharm. 38 (2012) 380-385; DOI: 10. 3109/03639045.2011.608680.10.3109/03639045.2011.60868021942281Search in Google Scholar

147. M. Otsuka, F. Kato and Y. Matsuda, Comparative evaluation of the degree of indomethacin crystallinity by chemoinfometrical Fourier-transformed near-infrared spectroscopy and conventional powder X-ray diffractometry, AAPS PharmSci 2 (2000) E9; DOI: 10.1208/ps020109.10.1208/ps020109275100411741225Search in Google Scholar

148. P. Vandenabeele, Practical Raman Spectroscopy, Wiley, Chichosten 2013, pp. 23-80.10.1002/9781119961284Search in Google Scholar

149. P. Karmwar, K. Graeser, K. C. Gordon, C. J. Strachan and T. Rades, Effect of different preparation methods on the dissolution behaviour of amorphous indomethacin, Eur. J. Pharm. Biopharm.80 (2012) 459-464; DOI: 10.1016/j.ejpb.2011. in Google Scholar

150. J. P. Boetker, V. Koradia, T. Rades and J. Rantanen, Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes, Pharmaceutics 4 (2012) 93-103 DOI: 10.3390/pharmaceutics4010093.10.3390/pharmaceutics4010093383490924300182Search in Google Scholar

151. M. Savolainen, K. Kogermann, A. Heinz, J. Aaltonen, L. Peltonen, C. Strachan and J. Yliruusi, Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy, Eur. J. Pharm. Biopharm. 71 (2009) 71-79; DOI: 10.1016/j.ejpb. 2008.06.001.Search in Google Scholar

152. S. Hasegawa, T. Hamaura, N. Furuyama, S. Horikawa, A. Kusai, E. Yonemochi and K. Terada, Uniformity and physical states of troglitazone in solid dispersions determined by electron probe microanalysis and microthermal analysis, Int. J. Pharm. 280 (2004) 39-46; DOI: 10.1016/j. ijpharm.2004.04.024.Search in Google Scholar

153. K. Kawakami, T. Numa and Y. Ida, Assessment of amorphous content by microcalorimetry, J. Pharm. Sci. 91 (2002) 417-423; DOI: 10.1002/jps.10017.10.1002/jps.1001711835201Search in Google Scholar

154. G. Buckton, P. Darcy, D. Greenleaf and P. Holbrook, The use of isothermal microcalorimetry in the study of changes in crystallinity of spray-dried salbutamol sulphate, Int. J. Pharm. 116 (1995) 113-118; DOI: 10.1016/0378-5173(94)00322-V.10.1016/0378-5173(94)00322-VSearch in Google Scholar

155. L. E. Briggner, G. Buckton, K. Bystrom and P. Darcy, The use of isothermal microcalorimetry in the study of changes in crystallinity induced during the processing of powders, Int. J. Pharm.105 (1994) 125-135; DOI: 10.1016/0378-5173(94)90458-8.10.1016/0378-5173(94)90458-8Search in Google Scholar

156. D. Giron, P. Remy, S. Thomas and E. Vilette, Quantitation of amorphicity by microcalorimetry, J. Therm. Anal. 48 (1997) 465-472; DOI: 10.1007/BF01979493.10.1007/BF01979493Search in Google Scholar

157. J. Nishizawa, N. G. Hadjiconstantinou, G. Dimonte, P. S. Lomdahl, B. L. Holian and B. J. Alder, Pioneering work of THz wave and its application for molecular sciences, AIP Conference Proceedings708 (2004) 369-375. 10.1063/1.1764178Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo