1. bookVolume 63 (2013): Edizione 3 (September 2013)
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Cyclodextrin based nanosponges for pharmaceutical use: A review

Pubblicato online: 22 Oct 2013
Volume & Edizione: Volume 63 (2013) - Edizione 3 (September 2013)
Pagine: 335 - 358
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno

1. L. Guo, G. Gao, X. Liu and F. Liu, Preparation and characterization of TiO2 nanosponge, Mater. Chem. Phys. 111 (2008) 322-325; DOI: 10.1186/1556-276X-6-551.10.1186/1556-276X-6-551Search in Google Scholar

2. D. Farrell, S. Limaye and S. Subramanian, Silicon Nanosponge Particles, U.S. Pat 0,251,561A1, 9 Nov 2006.Search in Google Scholar

3. V. Dakankov, M. Llyin, M. Tsyurupa, G. Timofeeva and L. Dubronina, From a dissolved polystyrene coil to intramolecularly hyper cross linked nanosponges, Macromolecules 29 (1998) 8398-8403; DOI: 10.1021/ma951673i.10.1021/ma951673iSearch in Google Scholar

4. S. Swaminathan, L. Pastero, L. Serpe, F. Trotta, P. Vavia, D. Aquilano, M. Trotta, G. Zara and R. Cavalli, Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity, Eur. J. Pharm. Biopharm. 74 (2010) 193-201; DOI: 10.1016/ j.ejpb.2009. in Google Scholar

5. F. Melani, P. Mura, M. Adamo, F. Maestrelli, P. Gratteri and C. Bonaccini, New docking CFF91 parameters specific for cyclodextrin inclusion complexes, Chem. Phys. Lett. 370 (2003) 280-292; DOI: 10.1016/S0009-2614(03)00126-X.10.1016/S0009-2614(03)00126-XSearch in Google Scholar

6. P. Couvreur and C. Vauthier, Nanotechnology: intelligent design to treat complex disease, Pharm. Res. 23 (2006) 1417-1450; DOI: 10.1007/s11095-006-0284-8.10.1007/s11095-006-0284-8Search in Google Scholar

7. C. Zhang, N. Awasthi, M. A. Schwarz, S. Hinz and R. E. Schwarz, Superior antitumor activity of nanoparticle albumin-bound paclitaxel in experimental gastric cancer, PLoS One. 8 (2013) e58037; DOI: 10.1371/journal.pone.0058037.10.1371/journal.pone.0058037Search in Google Scholar

8. Y. Fukumori and H. Ichikawa, Nanoparticles for cancer therapy and diagnosis, Adv. PowderTechnol. 17 (2006) 1-28; DOI: 10.1163/156855206775123494.10.1163/156855206775123494Search in Google Scholar

9. M. Morishita and N. Peppas, Is the oral route possible for peptide and protein drug delivery, Drug Discov. Today 11 (2006) 905-910; DOI: 10.1007/s11095-006-0284-8.10.1007/s11095-006-0284-8Search in Google Scholar

10. H. Cohen, R. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski and G. Golomb, Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles, Gene Ther. 7 (2000) 1896-1905; DOI: 10.1038/sj.gt.3301318.10.1038/sj.gt.3301318Search in Google Scholar

11. L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere and P. Speiser, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int. J. Pharm. 15 (1983) 335-345; DOI: 10.1016/0378-5173(83)90166-7.10.1016/0378-5173(83)90166-7Search in Google Scholar

12. L. Illum, S. S. Davis, C. G. Wilson, N. W. Thomas, M. Frier and J. G. Hardy, Blood clearance and organ deposition of intravenously administered colloidal particles, The effects of particle size, nature and shape, Int. J. Pharm. 12 (1982) 135-146; DOI: 10.1016/0378-5173(82)90113-2.10.1016/0378-5173(82)90113-2Search in Google Scholar

13. P. Couvreur, B. Kante, V. Lenaerts, V. Scailteur, M. Roland and P. Speiser, Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles, J. Pharm. Sci. 69 (1980) 199-202; DOI: 10.1002/jps.2600690222.10.1002/jps.26006902227359324Search in Google Scholar

14. J. Kreuter, Nanoparticles, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick and J. C. Boylan), Marcel Dekker In., New York 1994, pp.165-190.Search in Google Scholar

15. J. Xing, D. Zhang and T. Tan, Studies on the oridonin-loaded poly(D,L-lactic acid) nanoparticles in vitro and in vivo, Int. J. Biol. Macromol. 40 (2007) 153-158; DOI: 10.1016/j.ijbiomac.2006. 07.001.Search in Google Scholar

16. E. Garcia-Garcia, K. Andrieux, S. Gil and P. Couvreur, Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain, Int. J. Pharm. 298 (2005) 274-292; DOI: 10.1016/j.ijpharm.2005. in Google Scholar

17. S. Subramanian, A. Singireddy, K. Krishnamoorthy and M. Rajappan, Nanosponges: A Novel Class of Drug Delivery System - Review, J. Pharm. Pharmac. Sci. 15 (2012) 103-111.Search in Google Scholar

18. A. Nokhodchi, M. Jelvehgari, M. Reza Siahi and M. Reza Mozafar, Factors affecting the morphology of benzoyl peroxide microsponges, Micron 38 (2007) 834-840, DOI: 10.1016/j.micron. 2007.06.012.Search in Google Scholar

19. F. Trotta and R. Cavalli, Characterization and application of new hyper-cross-linked cyclodextrins, Compos. Interfaces 16 (2009) 39-48, DOI: 10.1163/156855408X379388.10.1163/156855408X379388Search in Google Scholar

20. F. Trotta, R. Cavalli, V. Tumiatti, O. Zerbinati, C. Roggero and R. Vallero, Ultrasound AssistedSynthesis of Cyclodextrin Based Nanosponges, EP Pat 1786841A1, 23May, 2007.Search in Google Scholar

21. S. Eki, T. Lei, L. Jingquan, J. Zhongfan, B. Cyrille and P. D. Thomas, Biodegradable star polymers functionalized with b-cyclodextrin inclusion complexes, Biomacromolecules, 10 (2009) 2699-2707; DOI: 10.1021/bm900646g.10.1021/bm900646g19663421Search in Google Scholar

22. S. Swaminathan, R. Cavalli, F. Trotta, P. Ferruti, E. Ranucci, I. Gerges, A. Manfredi, D. Marinotto and P. Vavia, In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of b-cyclodextrin, J. Incl. Phenom. Macrocycl. Chem. 68 (2010) 183-191; DOI: 10.1007/s10847-010-9765-9.10.1007/s10847-010-9765-9Search in Google Scholar

23. A. Vyas, S. Saraf and S. Saraf, Cyclodextrin based novel drug delivery systems, J. Incl. Phenom. Macrocycl. Chem. 62 (2008) 23-42; DOI: 10.1007/s10847-008-9456-y.10.1007/s10847-008-9456-ySearch in Google Scholar

24. T. Girek and W. Ciesielski, Polymerization of b-cyclodextrin with maleic anhydride along with thermogravimetric study of polymers, J. Incl. Phenom. Macrocycl. Chem. (2010) 1-7; DOI: 10. 1007/s10847-010-9778-4.Search in Google Scholar

25. D. Li and M. Ma, Nanosponges: From inclusion chemistry to water purifying technology, Chem.\ Sci. Technol. (1999) 26-28.Search in Google Scholar

26. C. Rajeswari, A. Alka, A. Javed and R. Khar, Cyclodextrins in drug delivery: an update review, AAPS PharmSciTech. 6 (2005) E329-E357; DOI: 10.1208/pt060243.10.1208/pt060243275054616353992Search in Google Scholar

27. A. Modi and P. Tayade, Comparative solubility enhancement profile of valdecoxib with different solubilization approaches, Ind. J. Pharm. Sci. 69 (2007) 427-430; DOI: 10.4103/0250-474X. 33156.Search in Google Scholar

28. R. Cavalli, F. Trotta and W. Tumiatti, Cyclodextrin-based nanosponges for drug delivery, J. Incl. Phenom. Macrocycl. Chem. 56 (2006) 209-213; DOI: 10.1007/s10847-006-9085-2.10.1007/s10847-006-9085-2Search in Google Scholar

29. F. Trotta, V. Tumiatti, R. Cavalli, C. Roggero, B. Mognetti and G. Berta, Cyclodextrin-based Nanospongesas a Vehicle for Antitumoral Drugs, WO 2009/003656 A1; 2009.Search in Google Scholar

30. F. Trotta and T. Wander, Cross-linked Polymers Based on Cyclodextrins for Removing PollutingAgents, WO 2003/085002, US20050154198 A1, 14 July. 2005.Search in Google Scholar

31. S. Swaminathan, P. Vavia, F. Trotta and S. Torne, Formulation of beta-cyclodextrin based nanosponges of Itraconazole, J. Incl. Phenom. Macrocycl. Chem. 57 (2007) 89-94; DOI: 10.1007/s10847-006-9216-9.10.1007/s10847-006-9216-9Search in Google Scholar

32. A. Mele, F. Castiglione, L. Malpezzi, F. Ganazzoli, G. Raffaini, F. Trotta, B. Rossi, A. Fontana and G. Giunchi, HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in b-CD nanosponges, J. Incl. Phenom. Macrocycl. Chem. 69 (2011) 403-409; DOI: 10.1007/ s10847-010-9772-x.10.1007/s10847-010-9772-xSearch in Google Scholar

33. S. Swaminathan, P. Vavia, F. Trotta, R. Cavalli, P. Ferruti, E. Ranucci and I. Gerges, Release modulation and conformational stabilization of a model protein by use of swellable nanosponges of b-cyclodextrin, First European Cyclodextrin Conference, Aalborg, Denmark 2009.Search in Google Scholar

34. S. Torne, K. Ansari, P. Vavia, F. Trotta and R. Cavalli, Enhanced oral bioavailability after administration of paclitaxel-loaded nanosponges, Drug Deliv. 17 (2010) 419-425; DOI: 10.3109/ 10717541003777233.10.3109/1071754100377723320429848Search in Google Scholar

35. K. Ansari, P. Vavia, F. Trotta and R. Cavalli, Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study, AAPS PharmSciTech, 12 (2011) 279-286; DOI: 10.1208/s12249-011-9584-3.10.1208/s12249-011-9584-3306634021240574Search in Google Scholar

36. E. Patel and R. Oswal, Nanosponge and micro sponges: a novel drug delivery system, Int. J. Res. Pharm. Chem. 2 (2012) 237-244.Search in Google Scholar

37. T. Loftsson and M. Brewster, Pharmaceutical applications of cyclodextrins: drug solubilization and stabilization, J. Pharm. Pharmacol. 85 (1996) 1017-1025; DOI: 10.1021/js950534b.10.1021/js950534b8897265Search in Google Scholar

38. A. Radi and S. Eissa, Electrochemical study of indapamide and its complexation with b-cyclodextrin, J. Incl. Phenom. Macrocycl. Chem. 71 (2011) 95-102; DOI: 10.1007/s10847-010.9906-1.10.1007/s10847-010-9906-1Search in Google Scholar

39. H. Bricout, F. Hapiot, A. Ponchel, E. Monflier and S. Tilloy, Chemically modified cyclodextrins: an attractive class of supramolecular hosts for the development of aqueous biphasic catalytic processes, Sustainability 1 (2009) 924-945; DOI: 10.3390/su1040924.10.3390/su1040924Search in Google Scholar

40. H. Dodziuk, Molecules with Holes - Cyclodextrins, in Cyclodextrins and Their Complexes (Ed. H. Dodziuk), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2006, pp. 1-30.10.1002/3527608982.ch1Search in Google Scholar

41. D. Li and M. Ma, Nanosponges for water purification, Clean Prod. Process. 2 (2000) 112-16; DOI: 10.1007/s100980000061.10.1007/s100980000061Search in Google Scholar

42. E. Bilensoy and A. Atilla, Cyclodextrin-based Nanomaterials in Pharmaceutical Field, in PharmaceuticalSciences Encyclopedia: Drug Discovery, Development, and Manufacturing, John Wiley & Sons Inc. Publishers 2010; DOI: 10.1002/9780470259818.ch31.10.1002/9780470571224.pse370Search in Google Scholar

43. R. Lala, A. Thorat and C. Gargote, Current trends in b-cyclodextrin based drug delivery systems, Int. J. Res. Ayur. Pharm, 2 (2011) 1520-1526.Search in Google Scholar

44. B. Mamba, R. Krause, T. Malefetse and S. Sithhole, Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation, Water SA, 34 (2008) 657-660.10.4314/wsa.v34i5.180666Search in Google Scholar

45. B. Mamba, R. Krause, T. Malefetse, S. Mhlanga, S. Sithhole, K. Salipira and E. Nxumalo, Removal of geosmin and 2-methylisoborneol (2-MIB) in water from Zuikerbosch water treatment plant (Rand Water) using b-cyclodextrin polyurethane, Water SA, 32 (2007) 223-228.Search in Google Scholar

46. S. Tang, L. Kong, J. Ou, Y. Liu, X. Li and H. Zou, Application of cross-linked b-cyclodextrin polymer for adsorption of aromatic amino acid, J. Mol. Recogn. Macrocyclic Chem. 19 (2006) 39-48; DOI: 10.1002/jmr.756.10.1002/jmr.75616265676Search in Google Scholar

47. F. Trotta, R. Cavalli, S. Swaminathan, C. Sarzanini and P. Vavia, Novel functionalized nanosponges: synthesis, characterization. Safety assessment, cytotoxicity testing and interaction studies. Proceedings of the 14th International Cyclodextrin Symposium, Kyoto 2008, pp. 338-342.Search in Google Scholar

48. G. Yurtdas, M. Demirel and L. Genc, Inclusion complexes of fluconazole with b-cyclodextrin: physicochemical characterization and in vitro evaluation of its formulation, J. Incl. Phenom. Macrocycl. Chem. 70 (2011) 429-435; DOI: 10.1007/s10847-010-9908-z.10.1007/s10847-010-9908-zSearch in Google Scholar

49. A. Rasheed, Cyclodextrins as drug carrier molecule: a review, Sci. Pharmac. 76 (2008) 567-598; DOI: 10.3797/scipharm.0808-05.10.3797/scipharm.0808-05Search in Google Scholar

50. P. Sinko, Martin’s Physical Pharmacy and Pharmaceutical Sciences, 5th ed., Lippincott Williams & Williams Publishers, Philadelphia 2006, p.466.Search in Google Scholar

51. T. Govender, S. Stolnik, M. Garnett, L. Illum and S. Davis, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug, J. Control. Release 57 (1999) 171-185; DOI: 10.1016/S0168-3659(98)00116-3.10.1016/S0168-3659(98)00116-3Search in Google Scholar

52. S. Galindo-Rodriguez, E. Allémann, H. Fessi and E. Doelker, Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion and nanoprecipitation methods, Pharm. Res. 21 (2004) 1428-1439; DOI: 10.1023/B:PHAM.0000036917.75634.be.10.1023/B:PHAM.0000036917.75634.beSearch in Google Scholar

53. M. Leroueil-Le Verger, L. Fluckiger, Y. Kim, M. Hoffman and P. Maincent, Preparation and characterization of nanoparticles containing an antihypertensive agent, Eur. J. Pharm. Biopharm. 46 (1998) 137-143; DOI: 10.1016/S0939-6411(98)00015-0.10.1016/S0939-6411(98)00015-0Search in Google Scholar

54. N. Santos-Magalhães, H. Fessi, F. Puisieux, S. Benita and M. Seiller, An in-vitro release kinetic examination and comparative evaluation between submicron emulsion and polylactic acid nanocapsules of clofibride, J. Microencapsul. 12 (1995) 195-205; DOI: 10.3109/02652049509015290.10.3109/02652049509015290Search in Google Scholar

55. A. Layre, R. Gref, J. Richard, D. Requier, H. Chacun, M. Appel, A. Domb and P. Couvreur, Nanoencapsulation of a crystalline drug, Int. J. Pharm. 298 (2005) 323-327; DOI: 10.1016/j. ijpharm.2005. in Google Scholar

56. D. Lemoine, C. Francois, F. Kedzierewicz, V. Preat, M. Hoffman and P. Maincent, Stability study of nanoparticles of poly(b-caprolactone), poly(D,L-lactide) and poly(D,L-lactideco-glycolide), Biomaterials 17 (1996) 2191-2197. DOI: 10.1016/0142-9612(96)00049-X.10.1016/0142-9612(96)00049-XSearch in Google Scholar

57. Y. Jeong, Y. Shim, C. Kim, G. Lim, K. Choi and C. Yoon, Effect of cryoprotectants on the reconstitution properties of surfactant-free nanoparticles of poly (D,L-lactide-co-glycolide), J. Microencapsul.22 (2005) 593-601; DOI: 10.1080/02652040500162659.10.1080/02652040500162659Search in Google Scholar

58. H. Redhead, S. Davis and L. Illum, Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation, J. Control. Release, 70 (2001) 353-363; DOI: 10.1016/S0168-3659(00)00367-9.10.1016/S0168-3659(00)00367-9Search in Google Scholar

59. M. Bivas-Benita, S. Romeijn, H. Junginger and G. Borchard, PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium, Eur. J. Pharm. Biopharm. 58 (2004) 1-6; DOI: 10.1016/j.ejpb. 2004.03.008.Search in Google Scholar

60. R. Pecora, Dynamic light scattering measurement of nanometer particles in liquids, J. NanoparticleRes. 2 (2000) 123-131; DOI: 10.1023/A:1010067107182.10.1023/A:1010067107182Search in Google Scholar

61. M. Santander-Ortega, A. Jódar-Reyes, N. Csabac, D. Bastos-González and J. Ortega-Vinuesa, Colloidal stability of Pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms, J. Colloid. Interf. Sci. 302 (2006) 522-529; DOI: 10.1016/j.jcis.2006. in Google Scholar

62. Y. Ishikawa, Y. Katoh and H. Ohshima, Colloidal stability of aqueous polymeric dispersions: effect of pH and salt concentration, Colloid Surf. B 42 (2005) 53-58; DOI: 10.1016/j.colsurfb.2005. 01.006.Search in Google Scholar

63. J. Shar, T. Obey and T. Cosgrove, Adsorption studies of polyether’s- Part1: Adsorption onto hydrophobic surfaces, Colloid Surf A: Physicochemical and Engineering Aspects 136 (1998) 21-33, DOI: 10.1016/S0927-7757(97)00182-9.10.1016/S0927-7757(97)00182-9Search in Google Scholar

64. E. Leo, B. Brina, F. Forni and M. Vandelli, In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form, Int. J. Pharm. 278 (2004) 133-141, DOI: 10. 1016/j.ijpharm.2004. in Google Scholar

65. U. Bilati, E. Allemann and E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci. 24 (2005) 67-75; DOI: 10.1016/j.ejps.2004. in Google Scholar

66. M. Bivas-Benita, S. Romeijn, H. Junginger and G. Borchard, PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium, Eur. J. Pharm. Biopharm. 58 (2004) 1-6; DOI: 10.1016/j.ejpb. 2004.03.008.Search in Google Scholar

67. H. Fessi, F. Puisieux, J. Devissaguet, N. Ammoury and S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm. 55 (1989) R1-R4; DOI: 10.1016/0378-5173(89)90281-0.10.1016/0378-5173(89)90281-0Search in Google Scholar

68. M. Chorny, I. Fishbein, H. D. Danenberg and G. Golomb, Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics, J. Control. Release 83 (2002) 389-400; DOI: 10.1016/S0168-3659(02)00211-0.10.1016/S0168-3659(02)00211-0Search in Google Scholar

69. V. Mosqueira, P. Legrand, H. Pinto-Alphandary, F. Puisieux and G. Barratt, Poly (D,L-lactide) nanocapsules prepared by a solvent displacement process: influence of the composition on physicochemical and structural properties, J. Pharm. Sci. 89 (2000) 614-626; DOI: 10.1002/(SICI) 1520-6017(200005)89:5<614::AID-JPS7>3.0.CO;2-7.Search in Google Scholar

70. J. Ren, H. Hong, J. Song and T. Ren, Particle size and distribution of biodegradable poly-D,L- -lactide-co-poly(ethylene glycol) block polymer nanoparticles prepared by nanoprecipitation, J. Appl. Polym. Sci. 98 (2005) 1884-1890; DOI: 10.1002/app.22070.10.1002/app.22070Search in Google Scholar

71. M. Teixeira, M. Alonso, M. Pinto and C. Barbosa, Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3methoxyxanthone, Eur. J. Pharm. Biopharm. 59 (2005) 491-500; DOI: 10.1016/j.ejpb.2004. in Google Scholar

72. M. Tobìo, R. Gref, A. Sanchez, R. Langer and M. Alonso, Stealth PLA-PEG nanoparticles as protein carriers for nasal administration, Pharm. Res. 15 (1998) 276-279; DOI: 10.1023/A:1011922 819926.Search in Google Scholar

73. H. Brittain, D. Bogdanowich, J. DeVincentis, G. Lewen and A.Newman, Physical characterization of pharmaceutical solids, Pharm. Res. 8 (1991) 963-973. DOI: 10.1023/A:1015888520352.10.1023/A:1015888520352Search in Google Scholar

74. M. Hombreiro-Perez, J. Siepmann, C. Zinutti, A. Lamprecht, N. Ubrich, M. Hoffman, R. Bodmeier and P. Maincent, Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling, J. Control. Release 88 (2003) 413-428; DOI: 10.1016/S0168-3659(03)00030-0.10.1016/S0168-3659(03)00030-0Search in Google Scholar

75. M. Guyot and F. Fawaz, Nifedipine loaded-polymeric microspheres: preparation and physical characteristics, Int. J. Pharm. 175 (1998) 61-74; DOI: 10.1016/S0378-5173(98)00253-1.10.1016/S0378-5173(98)00253-1Search in Google Scholar

76. Y. Jeong, Y. Shim, K. Song, Y. Park, H. Ryu and J. Nah, Testosterone encapsulated surfactant-free nanoparticles of poly(D,L-lactide-co-glycolide): preparation and release behavior, Bull. KoreanChem. Soc. 23 (2002) 1579-1584.Search in Google Scholar

77. R. Suryanarayanan, X-Ray Powder Diffractometry, in Physical Characterization of Pharmaceutical Solids, Vol. 70 (Ed. H. G. Brittain), Marcel Dekker Inc., New York 1995, pp.187-221.10.1201/b14204-8Search in Google Scholar

78. J. Alongi, M. Skovi, A. Frache and F. Trotta, Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties, Polym. Degrad. Stabil. 95 (2010) 2093-2100; DOI: 10.1016/j.polymdegradstab.2010. in Google Scholar

79. G. Gilardi, F. Trotta, R. Cavalli, P. Ferruti, E. Ranucci, G. Di Nardo, C. Roggero and V. Tumiatti, Cyclodextrin Nanosponges as Carrier for Biocatalysts, and in the Delivery and Release of Enzymes, Proteins,Vaccines and Antibodies, WO2009149883 A1, 17 Dec.2009.Search in Google Scholar

80. S. Renuka, B. W. Roderick and P. Kamla, Evaluation of the kinetics and mechanism of drug release from Econazole Nitrate nanosponge loaded carbopol hydrogel, Ind. J. Pharm. Edu. Res. 45 (2011) 25-31.Search in Google Scholar

81. S. Renuka and P. Kamla, Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation, Pharm. Dev. Technol.16 (2011) 367-376; DOI: 10.3109/10837451003739289.10.3109/1083745100373928920367024Search in Google Scholar

82. S. Baboota, R. Khanna, S. Agarwal, J. Ali and A. Ahuja, Cyclodextrins in Drug Delivery Systems: An update, Available from Pharma. info. net., 2003, accessed on 13/01/2011.Search in Google Scholar

83. V. N. Wong, G. Fernando, A. R. Wagner, J. Zhang, G. R. Kinsel, S. Zauscher and D. J. Dyer, Separation of peptides with polyionic nanosponges for MALDIMS analysis, Langmuir 25 (2009) 1459-1465; DOI: 10.1021/la802723r.10.1021/la802723r271679619123797Search in Google Scholar

84. A. Jenny, P. Merima, F. Alberto and T. Francesco, Role of b-cyclodextrin nanosponges in polypropylene photooxidation, Carbohyd. Polym. 86 (2011) 127-135; DOI: 10.1016/j.carbpol.2011.04. 022.Search in Google Scholar

85. K. William, S. Benjamin and H. Eva, Synthesis and Characterization of Nanosponges for Drug Deliveryand Cancer Treatment, www.Vanderbilt.edu, accessed on 20.12.2011.Search in Google Scholar

86. L. Wenting, Y. Cheng, N. Masaki, F. Gaku, M. Tadashi, M. Andrea, C. Franca, C. Fabrizio, T. Francesco and I. Yoshihisa, Cyclodextrin nanosponge-sensitized enantiodifferentiating photoisomerization of cyclooctene and 1,3-cyclooctadiene, Beilstein J. Org. Chem. 8 (2012) 1305-1311; DOI: 10.3762/bjoc.8.149. 10.3762/bjoc.8.149345875423019464Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo