Accesso libero

Classifier Spot Count Optimization of Automated Fluorescent Slide Scanning System

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1.Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J. 2006. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol.173:195 – 206.10.1083/jcb.200510130206381116618811 Search in Google Scholar

2.Rogakou EP, Boon C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146:905 – 916.10.1083/jcb.146.5.905216948210477747 Search in Google Scholar

3.Rothkamm K, Löbrich M. 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA. 100:5057 – 5062.10.1073/pnas.083091810015429712679524 Search in Google Scholar

4.Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. 2007. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology. 242:244 – 251.10.1148/radiol.242106017117185671 Search in Google Scholar

5.Depuydt J, Baert A, Vandersickel V, Thierens H, Vral A. 2013. Relative biological effectiveness of mammography X-rays at the level of DNA and chromosomes in lymphocytes. Int J Radiat Biol. 89:532 – 538.10.3109/09553002.2013.78244723484479 Search in Google Scholar

6.Vandevoorde C, Gomolka M, Roessler U, Samaga D, Lindholm C, Fernet M, Hall J, Pernot E, El-Saghire H, Baatout S, et al. 2015. EPI-CT: in vitro assessment of the applicability of the gamma-H2AX-foci assay as cellular biomarker for exposure in a multicentre study of children in diagnostic radiology. Int J Radiat Biol. 91:653 – 663.10.3109/09553002.2015.104798725968559 Search in Google Scholar

7.Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. 2011. gammaH2AX foci as a measure of DNA damage: a computational approach to automatic analysis. Mutat Res. 711:49 – 60.10.1016/j.mrfmmm.2010.12.015310131021216255 Search in Google Scholar

8.Barnard S, Ainsbury E, Al-Hafidh J, Hadjidekova V, Hristova R, Lindholm C, Gil OM, Moquet J, Moreno M, Rößler U. 2014. The first gamma- H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiat Protect Dosimetry. ncu259.10.1093/rpd/ncu25925118318 Search in Google Scholar

9.Lamkowski A, Forcheron F, Agay D, Ahmed EA, Drouet M, Meineke V, Scherthan H. 2014. DNA damage focus analysis in blood samples of minipigs reveals acute partial body irradiation. Plos One. 9:e87458.10.1371/journal.pone.0087458391197424498326 Search in Google Scholar

10. Viau M, Testard I, Shim G, Morat L, Normil MD, Hempel WM, Sabatier L. 2015. Global quantification of cH2AX as a triage tool for the rapid estimation of received dose in the event of accidental radiation exposure. Mutat Res/Genet Toxicol Environ Mutagenesis. 793:123 – 131.10.1016/j.mrgentox.2015.05.00926520382 Search in Google Scholar

11. Jakl L, Marková E, Koláriková L, Belyaev I. 2020. Biodosimetry of Low Dose Ionizing Radiation Using DNA Repair Foci in Human Lymphocytes. Genes (Basel). Jan 4; 11(1):58. Search in Google Scholar

12. Horn S, Barnard S, Rothkamm K. 2011. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS One. 6:e25113.10.1371/journal.pone.0025113317947621966430 Search in Google Scholar

13. Wojewodzka M, Sommer S, Kruszewski M, Sikorska K, Lewicki M, Lisowska H, Wegierek-Ciuk A, Kowalska M, Lankoff A. 2015. Defining blood processing parameters for optimal detection of gamma-H2AX foci: a small blood volume method. Radiat Res. 184:95 – 104.10.1667/RR13897.126121226 Search in Google Scholar

14. Zastko L, Petrovičová P, Račková A, Jakl L, Jakušová V, Marková E, Belyaev I. 2021. DNA damage response and apoptosis induced by hyperthermia in human umbilical cord blood lymphocytes. Toxicology in Vitro. Volume 73. 105127, ISSN 0887-2333. Search in Google Scholar

15. Markova E, Schultz N, Belyaev IY. 2007. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival. Int J Radiat Biol. 83:319 – 329.10.1080/0955300060117046917457757 Search in Google Scholar

16. Groesser T, Fontenay GV, Han J, Chang H, Pluth J, Parvin B. 2015. Quantification of the dynamics of DNA repair to ionizing radiation via colocalization of 53BP1 and gamma H2AX. In: Bhanu B, Talbot P, editors. Video bioinformatics: from live imaging to knowledge: Computational Biology Series, v. 22: Dordrecht: Springer. p. 253 – 263. Search in Google Scholar

17. Vandevoorde C, Gomolka M, Roessler U, Samaga D, Lindholm C, Fernet M, Hall J, Pernot E, El-Saghire H, Baatout S, et al. 2015. EPI-CT: in vitro assessment of the applicability of the gamma-H2AX-foci assay as cellular biomarker for exposure in a multicentre study of children in diagnostic radiology. Int J Radiat Biol. 91:653 – 663.10.3109/09553002.2015.104798725968559 Search in Google Scholar

18. Zastko L, Račková A, Petrovičová P, Durdík M, Míšek J, Marková E, Belyaev I. 2021. Evaluation of Calyculin A Effect on γH2AX/53BP1 Focus Formation and Apoptosis in Human Umbilical Cord Blood Lymphocytes. Int J Mol Sci. 22(11):5470.10.3390/ijms22115470819685234067339 Search in Google Scholar

19. Qvarnstrom OF, Simonsson M, Johansson KA, Nyman J, Turesson I. 2004. DNA double strand break quantification in skin biopsies. Radiother Oncol. 72:311 – 317.10.1016/j.radonc.2004.07.00915450730 Search in Google Scholar

20. Bocker W, Iliakis G. 2006. Computational methods for analysis of foci: validation for radiation-induced gamma-H2AX foci in human cells. Radiat Res. 165:113 – 124.10.1667/RR3486.116392969 Search in Google Scholar

21. Barber P, Locke R, Pierce G, Rothkamm K, Vojnovic B. 2007. Gamma- H2AX foci counting: image processing and control software for highcontent screening: Biomedical Optics (BiOS) 2007:64411M–64411M-10.10.1117/12.705217 Search in Google Scholar

22. Hou Y-N, Lavaf A, Huang D, Peters S, Huq R, Friedrich V, Rosenstein BS, Kao J. 2009. Development of an automated c-H2AX immunocytochemistry assay. Radiat Res. 171:360 – 367.10.1667/RR1349.119267563 Search in Google Scholar

23. Roch-Lefevre S, Mandina T, Voisin P, Gaetan G, Mesa JE, Valente M, Bonnesoeur P, Garcia O, Voisin P, Roy L. 2010. Quantification of gamma-H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure. Radiat Res. 174:185 – 194.10.1667/RR1775.120681785 Search in Google Scholar

24. Turner HC, Sharma P, Perrier JR, Bertucci A, Smilenov L, Johnson G, Taveras M, Brenner DJ, Garty G. 2014. The RABiT: high-throughput technology for assessing global DSB repair. Radiat Environ Biophys. 53:265 – 272.10.1007/s00411-014-0514-0399926524477408 Search in Google Scholar

25. Kosik P, Durdik M, Jakl L, Skorvaga M, Markova E, Vesela G, Vokalova L, Kolariková L, Horvathova E, Kozics K, Belyaev I. 2020. DNA damage response and preleukemic fusion genes induced by ionizing radiation in umbilical cord blood hematopoietic stem cells. Sci Rep. 10. 13722.10.1038/s41598-020-70657-z744528332839487 Search in Google Scholar

26. Misek J, Laukova T, Kohan M, Veternik M, Jakusova V, Jakus J. 2018.Measurement of Low-level radiofrequency electromagnetic fields in the human environment. Acta Medica Martiniana. 18(2): 27 – 33.10.2478/acm-2018-0010 Search in Google Scholar

27. Sladicekova K, Bereta M, Misek J, Parizek D, Jakus J. 2021. Biological effects of a low-frequency electromagnetic field on yeast cells of the genus Saccharomyces Cerevisiae. Acta Medica Martiniana. 21(2): 34 – 41.10.2478/acm-2021-0006 Search in Google Scholar

28. Jakl L, Lobachevsky P, Vokálová L, Durdík M, Marková E, Belyaev I. 2016. Validation of JCountPro software for efficient assessment of ionizing radiation-induced foci in human lymphocytes. Int J Radiat Biol. 92(12):766 – 773.10.1080/09553002.2016.122209327648492 Search in Google Scholar

29. Vasilyev SA, Kubes M, Markova E, Belyaev I. 2013. DNA damage response in CD133 + stem/progenitor cells from umbilical cord blood: low level of endogenous foci and high recruitment of 53BP1. Int J Radiat Biol. 89:301 – 309.10.3109/09553002.2013.75455523206244 Search in Google Scholar

30. Cai Z, Vallis KA, Reilly RM. 2009. Computational analysis of the number, area and density of gamma-H2AX foci in breast cancer cells exposed to (111) In-DTPAhEGF or gamma-rays using Image-J software. Int J Radiat Biol. 85:262 – 271.10.1080/0955300090274875719296344 Search in Google Scholar

eISSN:
1338-4139
Lingua:
Inglese
Frequenza di pubblicazione:
3 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Internal Medicine, Cardiology