Accesso libero

Regulation of Cough by Voltage-Gated Sodium Channels in Airway Sensory Nerves

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Canning BJ, Chang AB, Bolser DC, Smith JA, Mazzone SB, McGarvey L. CHEST Expert Cough Panel. Anatomy and neurophysiology of cough: CHEST Guideline and Expert Panel report. Chest 2014; 146 (6): 1633-1648.10.1378/chest.14-1481425162125188530Search in Google Scholar

2. Muroi Y, Undem BJ. Targeting voltage gated sodium channels NaV1.7, Na V1.8, and Na V1.9 for treatment of pathological cough. Lung 2014; 192 (1): 15-20.10.1007/s00408-013-9533-x438156424272479Search in Google Scholar

3. Sun H, Kollarik M, Undem BJ. Blocking voltage-gated sodium channels as a strategy to suppress pathological cough. Pulm Pharmacol Ther 2017; 47: 38-41.10.1016/j.pupt.2017.05.01028522215Search in Google Scholar

4. Kollarik M, Sun H, Herbstsomer RA, Ru F, Kocmalova M, Meeker SN, Undem BJ. Different role of TTX-sensitive voltage-gated sodium channel (NaV 1) subtypes in action potential initiation and conduction in vagal airway nociceptors. J Physiol 2018; 596 (8): 1419-1432.10.1113/JP275698589998429435993Search in Google Scholar

5. Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2016; 96 (3): 975-1024.10.1152/physrev.00039.2015498203627279650Search in Google Scholar

6. Baker CV. The embryology of vagal sensory neurons. In: Advances in Vagal Afferent Neurobiology, Undem BJ, Weinreich D, editors. Boca Raton, FL: CRC; 2005. p. 3–26.10.1201/9780203492314.pt1Search in Google Scholar

7. Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 2010; 588 (Pt 23): 4769-4783.10.1113/jphysiol.2010.195339301014520937710Search in Google Scholar

8. Hodes R. Linear relationship between fiber diameter and velocity of conduction in giant axon of squid. J Neurophysiol 1953; 16 (2): 145-154.10.1152/jn.1953.16.2.14513035473Search in Google Scholar

9. Canning BJ, Undem BJ. Evidence that distinct neural pathways mediate parasympathetic contractions and relaxations of guinea-pig trachealis. J Physiol 1993; 471: 25-40.10.1113/jphysiol.1993.sp01988911439507907144Search in Google Scholar

10. Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol 2004; 557 (Pt 2): 543-558.10.1113/jphysiol.2003.057885166510615004208Search in Google Scholar

11. Undem BJ, Chuaychoo B, Lee MG, Weinreich D, Myers AC, Kollarik M. Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 2004; 556 (Pt 3): 905–917.10.1113/jphysiol.2003.060079166500714978204Search in Google Scholar

12. Kwong K, Carr MJ, Gibbard A, Savage TJ, Singh K, Jing J, Meeker S, Undem BJ. Voltage-gated sodium channels in nociceptive versus non-nociceptive nodose vagal sensory neurons innervating guinea pig lungs. J Physiol 2008; 586 (5): 1321-1336.10.1113/jphysiol.2007.146365237566018187475Search in Google Scholar

13. Kollarik M, Undem BJ. Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J Physiol 2002; 543 (Pt 2): 591-600.10.1113/jphysiol.2002.022848229052212205192Search in Google Scholar

14. Lin YJ, Lin RL, Ruan T, Khosravi M, Lee LY. A synergistic effect of simultaneous TRPA1 and TRPV1 activations on vagal pulmonary C-fiber afferents. J Appl Physiol (1985) 2015; 118 (3): 273-281.10.1152/japplphysiol.00805.2014431284925414245Search in Google Scholar

15. Kollarik M, Dinh QT, Fischer A, Undem BJ. Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse. J Physiol 2003; 551 (Pt 3): 869-879.10.1113/jphysiol.2003.042028234330212909686Search in Google Scholar

16. Riccio MM, Kummer W, Biglari B, Myers AC, Undem BJ. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol 1996; 496 (Pt 2): 521-530.10.1113/jphysiol.1996.sp02170311608958910234Search in Google Scholar

17. Kajekar R, Proud D, Myers AC, Meeker SN, Undem BJ. Characterization of vagal afferent subtypes stimulated by bradykinin in guinea pig trachea. J Pharmacol Exp Ther 1999; 289 (2): 682-687.Search in Google Scholar

18. Yu S, Undem BJ, Kollarik M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J Physiol 2005; 563 (Pt 3): 831-842.10.1113/jphysiol.2004.079574166560315649987Search in Google Scholar

19. Kollarik M, Ru F, Brozmanova M. Vagal afferent nerves with the properties of nociceptors. Autonomic Neuroscience: Basic and Clinical 2010; 153: 12–20.10.1016/j.autneu.2009.08.001281815219751993Search in Google Scholar

20. Coleridge JC, Coleridge HM. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 1984; 99: 1–110.10.1007/BFb0027715Search in Google Scholar

21. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997; 389 (6653): 816-824.10.1038/398079349813Search in Google Scholar

22. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004; 427 (6971): 260-265.10.1038/nature0228214712238Search in Google Scholar

23. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006; 124 (6): 1269-1282.10.1016/j.cell.2006.02.023Search in Google Scholar

24. Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, Undem BJ. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 2008; 586 (6): 1595-1604.10.1113/jphysiol.2007.148379Search in Google Scholar

25. Brozmanova M, Mazurova L, Ru F, Tatar M, Kollarik M. Comparison of TRPA1-versus TRPV1-mediated cough in guinea pigs. Eur J Pharmacol 2012; 689: 211-218.10.1016/j.ejphar.2012.05.048Search in Google Scholar

26. Kollarik M, Undem BJ. Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1-/- mice. J Physiol 2004; 555 (Pt 1): 115-123.10.1113/jphysiol.2003.054890Search in Google Scholar

27. Gu Q, Lee LY. Characterization of acid signaling in rat vagal pulmonary sensory neurons. Am J Physiol Lung Cell Mol Physiol 2006; 291 (1): L58-L65.10.1152/ajplung.00517.2005Search in Google Scholar

28. Coleridge HM, Coleridge JC. Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs. Respir Physiol 1977; 29 (2): 125-142.10.1016/0034-5687(77)90086-XSearch in Google Scholar

29. Chuaychoo B, Lee MG, Kollarik M, Undem BJ. Effect of 5-hydroxy-tryptamine on vagal C-fiber subtypes in guinea pig lungs. Pulm Pharmacol Ther 2005; 18 (4): 269–276.10.1016/j.pupt.2004.12.01015777609Search in Google Scholar

30. Chuaychoo B., Lee MG, Kollarik M, Pullmann R Jr, Undem BJ (2006). Evidence for both adenosine A1 and A2A receptors activating single vagal sensory C-fibres in guinea pig lungs. J Physiol; 575 (Pt 2): 481–490.10.1113/jphysiol.2006.109371Search in Google Scholar

31. Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ. P2X2 receptors differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol Lung Cell Mol Physiol 2008; 295 (5): L858-L865.10.1152/ajplung.90360.2008258487718689601Search in Google Scholar

32. Tatar M, Webber SE, Widdicombe JG. Lung C-fibre receptor activation and defensive reflexes in anaesthetized cats. J Physiol 1988; 402: 411-420.10.1113/jphysiol.1988.sp01721211918993236245Search in Google Scholar

33. Tatar M, Sant’Ambrogio G, Sant’Ambrogio FB. Laryngeal and tracheobronchial cough in anesthetized dogs. J Appl Physiol (1985) 1994; 76 (6): 2672-2679.10.1152/jappl.1994.76.6.26727928899Search in Google Scholar

34. Karlsson JA, Sant’Ambrogio FB, Forsberg K, Palecek F, Mathew OP, Sant’Ambrogio G. Respiratory and cardiovascular effects of inhaled and intravenous bradykinin, PGE2, and PGF2 alpha in dogs. J Appl Physiol (1985) 1993; 74 (5): 2380-2386.10.1152/jappl.1993.74.5.2380Search in Google Scholar

35. Hunter DD, Undem BJ. Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med 1999; 159 (6): 1943-1948.10.1164/ajrccm.159.6.9808078Search in Google Scholar

36. Canning BJ, Mori N, Mazzone SB. Vagal afferent nerves regulating the cough reflex. Respir Physiol Neurobiol 2006; 152 (3): 223-242.10.1016/j.resp.2006.03.001Search in Google Scholar

37. Mazzone SB, Reynolds SM, Mori N, Kollarik M, Farmer DG, Myers AC, Canning BJ. Selective expression of a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough. J Neurosci 2009; 29 (43): 13662-13671.10.1523/JNEUROSCI.4354-08.2009Search in Google Scholar

38. West PW, Canning BJ, Merlo-Pich E, Woodcock AA, Smith JA. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies. Am J Respir Crit Care Med 2015; 192 (1): 30-39.10.1164/rccm.201412-2293OCSearch in Google Scholar

39. Schelegle ES, Green JF. An overview of the anatomy and physiology of slowly adapting pulmonary stretch receptors. Respir Physiol 2001; 125 (1-2): 17-31.10.1016/S0034-5687(00)00202-4Search in Google Scholar

40. Widdicombe J. Functional morphology and physiology of pulmonary rapidly adapting receptors (RARs). Anat Rec A Discov Mol Cell Evol Biol 2003; 270 (1): 2-10.10.1002/ar.a.1000312494484Search in Google Scholar

41. Liu J, Yu J. Spectrum of myelinated pulmonary afferents (II). Am J Physiol Regul Integr Comp Physiol 2013; 305 (9): R1059-R1064.10.1152/ajpregu.00125.2013384032224049120Search in Google Scholar

42. Lee LY, Yu J. Sensory nerves in lung and airways. Compr Physiol 2014; 4(1): 287-324.10.1002/cphy.c130020Search in Google Scholar

43. Mills JE, Sellick H, Widdicombe JG. Vagal deflation reflexes mediated by lung irritant receptors. J Physiol 1969; 204 (2): 137P.10.1113/expphysiol.1970.sp0020605198736Search in Google Scholar

44. Sellick H, Widdicombe JG. The activity of lung irritant receptors during pneumothorax, hyperpnoea and pulmonary vascular congestion. J Physiol 1969; 203 (2): 359-381.10.1113/jphysiol.1969.sp00886813514495796468Search in Google Scholar

45. Dixon M, Jackson DM, Richards IM. The effects of H1- and H2-receptor agonists and antagonists on total lung resistance, dynamic lung compliance and irritant receptor discharge in the anaesthetized dog. Br J Pharmacol 1979; 66 (2): 203-209.10.1111/j.1476-5381.1979.tb13666.xSearch in Google Scholar

46. Ford AP, Undem BJ, Birder LA, Grundy D, Pijacka W, Paton JF. P2X3 receptors and sensitization of autonomic reflexes. Auton Neurosci 2015; 191: 16-24.10.1016/j.autneu.2015.04.005Search in Google Scholar

47. Schelegle ES. Functional morphology and physiology of slowly adapting pulmonary stretch receptors. Anat Rec A Discov Mol Cell Evol Biol 2003; 270 (1): 11-16.10.1002/ar.a.10004Search in Google Scholar

48. Shinagawa K, Kojima M, Ichikawa K, Hiratochi M, Aoyagi S, Akahane M. Participation of thromboxane A(2) in the cough response in guinea-pigs: antitussive effect of ozagrel. Br J Pharmacol 2000; 131 (2): 266–270.10.1038/sj.bjp.0703553Search in Google Scholar

49. El-Hashim AZ, Amine SA. The role of substance P and bradykinin in the cough reflex and bronchoconstriction in guineapigs. Eur J Pharmacol 2005; 513 (1–2): 125–133.10.1016/j.ejphar.2005.02.007Search in Google Scholar

50. Widdicombe JG. Airway receptors. Respir Physiol 2001; 125 (1-2): 3-15.10.1016/S0034-5687(00)00201-2Search in Google Scholar

51. Yu J, Wang YF, Zhang JW. Structure of slowly adapting pulmonary stretch receptors in the lung periphery. J Appl Physiol (1985) 2003; 95 (1): 385-393.10.1152/japplphysiol.00137.200312665534Search in Google Scholar

52. Widdicombe JG. Neurophysiology of the cough reflex. Eur Respir J 1995; 8 (7): 1193-1202.10.1183/09031936.95.080711937589405Search in Google Scholar

53. Fontana GA, Pantaleo T, Lavorini F, Mutolo D, Polli G, Pistolesi M. Coughing in laryngectomized patients. Am J Respir Crit Care Med 1999; 160 (5 Pt 1): 1578-1584.10.1164/ajrccm.160.5.990109310556124Search in Google Scholar

54. Young EC, Smith JA. Pharmacologic therapy for cough. Curr Opin Pharmacol 2011; 11(3): 224-230.10.1016/j.coph.2011.06.00321724464Search in Google Scholar

55. Brozmanova M, Plevkova J, Tatar M, Kollarik M. Cough reflex sensitivity is increased in the guinea pig model of allergic rhinitis. J Physiol Pharmacol 2008; 59 (suppl 6): 153–161Search in Google Scholar

56. Song WJ, Morice AH. Cough Hypersensitivity Syndrome: A Few More Steps Forward. Allergy Asthma Immunol Res 2017; 9 (5): 394-402.10.4168/aair.2017.9.5.394Search in Google Scholar

57. Bonvini SJ, Birrell MA, Smith JA, Belvisi MG. Targeting TRP channels for chronic cough: from bench to bedside. Naunyn Schmiedebergs Arch Pharmacol 2015; 388 (4): 401-420.10.1007/s00210-014-1082-1Search in Google Scholar

58. Keller JA, McGovern AE, Mazzone SB. Translating Cough Mechanisms Into Better Cough Suppressants. Chest 2017; 152 (4): 833-841.10.1016/j.chest.2017.05.016Search in Google Scholar

59. Belvisi MG, Geppetti P. Cough. 7: Current and future drugs for the treatment of chronic cough. Thorax 2004; 59 (5): 438-440.10.1136/thx.2003.013490Search in Google Scholar

60. Barnes PJ. The problem of cough and development of novel antitussives. Pulm Pharmacol Ther 2007; 20 (4): 416-422.10.1016/j.pupt.2006.11.001Search in Google Scholar

61. Smith J, Owen E, Earis J, Woodcock A. Effect of codeine on objective measurement of cough in chronic obstructive pulmonary disease. J Allergy Clin Immunol 2006; 117 (4): 831-835.10.1016/j.jaci.2005.09.055Search in Google Scholar

62. Noda M, Suzuki H, Numa S, Stühmer W. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett 1994; 259 (1): 213-216.10.1016/0014-5793(89)81531-5Search in Google Scholar

63. Habib AM, Wood JN, Cox, JJ. Sodium channels and pain. Handb Exp Pharmacol 2015; 227: 39-56.10.1007/978-3-662-46450-2_325846613Search in Google Scholar

64. Colquhoun D, Ritchie JM. The kinetics of the interaction between tetrodotoxin and mammalian nonmyelinated nerve fibers. Mol Pharmacol 1972; 8 (3): 285-292.10.1113/jphysiol.1972.sp009766Search in Google Scholar

65. Lago J, Rodríguez LP, Blanco L, Vieites JM, Cabado AG. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses. Mar Drugs 2015; 13 (10): 6384–6406.10.3390/md13106384462669626492253Search in Google Scholar

66. Muroi Y, Ru F, Kollarik M, Canning BJ, Hughes SA, Walsh S, Sigg M, Carr MJ, Undem BJ. Selective silencing of Na(V)1.7 decreases excitability and conduction in vagal sensory neurons. J Phy siol 2011; 589 (Pt 23): 5663-5676.10.1113/jphysiol.2011.215384324904122005676Search in Google Scholar

67. Laedermann CJ, Abriel H, Decosterd I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 2015; 6: 263.10.3389/fphar.2015.00263463350926594175Search in Google Scholar

68. Muroi Y, Ru F, Chou YL, Carr MJ, Undem BJ, Canning BJ. Selective inhibition of vagal afferent nerve pathways regulating cough using Nav 1.7 shRNA silencing in guinea pig nodose ganglia. Am J Physiol Regul Integr Comp Physiol 2013; 304 (11): R1017-R1023.10.1152/ajpregu.00028.2013368075723576611Search in Google Scholar

69. Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T, Payne B, Radomski C, Donaldson G, Ives E, Cox J, Younghusband HB, Green R, Duff A, Boltshauser E, Grinspan GA, Dimon JH, Sibley BG, Andria G, Toscano E, Kerdraon J, Bowsher D, Pimstone SN, Samuels ME, Sherrington R, Hayden MR. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 2007; 71 (4): 311-319.10.1111/j.1399-0004.2007.00790.x17470132Search in Google Scholar

70. Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T, Woods CG, Wood JN, Zufall F. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 2011; 472 (7342): 186-190.10.1038/nature09975367449721441906Search in Google Scholar

71. Kanellopoulos AH, Matsuyama A. Voltage-gated sodium channels and pain-related disorders. Clin Sci (Lond) 2016; 130 (24): 2257-2265.10.1042/CS2016004127815510Search in Google Scholar

72. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A 2007; 104 (20): 8520-8525.10.1073/pnas.0611364104189598217483457Search in Google Scholar

eISSN:
1335-8421
Lingua:
Inglese
Frequenza di pubblicazione:
3 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Internal Medicine, Cardiology