This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
World Health Organization. Obesity [Internet]. Geneva: WHO; 2023 [cited 2024 Jul 12]. Available from: https://www.who.int/health-topics/obesity/.Wisevoter.Search in Google Scholar
Obesity rates by country [Internet]. Wisevoter; 2023 [cited 2024 Jul 12] Available from: https://wisevoter.com/country-rankings/obesity-rates-by-country/.Search in Google Scholar
Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9):1431-7. DOI:10.1038/ijo.2008.102.Search in Google Scholar
Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol. 2021;27(25):3837-50; DOI:10.3748/wjg.v27.i25.3837.Search in Google Scholar
Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N, Khoshnood S. Obesity and gut-microbiota-brain axis: a narrative review. J Clin Lab Anal. 2022;36(5):e24420; DOI:10.1002/jcla.24420.Search in Google Scholar
Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859-904; DOI:10.1152/ physrev.00045.2009.Search in Google Scholar
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787-803; DOI:10.3748/wjg.v21.i29.8787.Search in Google Scholar
Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut micro-biota. Lancet Diabetes Endocrinol. 2015;3(3):207-15; DOI:10.1016/ S2213-8587(14)70134-2.Search in Google Scholar
Roy Sarkar S, Banerjee S. Gut microbiota in neurodegenerative disorders. J Neuroimmunol. 2019;328:98-104; DOI:10.1016/j. jneuroim.2019.01.004.Search in Google Scholar
Olszewski WL. The lymphatic system in body homeostasis: physiological conditions. Lymphat Res Biol. 2003;1(1):11-21; DOI:10.1089/15396850360495655.Search in Google Scholar
Koltowska K, Jakus Z, Hong YK, Kume T. Editorial: Lymphatic system: organ specific functions in health and disease. Front Cell Dev Biol. 2023;11:1224584; DOI:10.3389/fcell.2023.1224584.Search in Google Scholar
Mörbe UM, Jørgensen PB, Fenton TM, von Burg N, Riis LB, Spencer J, Agace WW. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 2021;14(4):793-802; DOI:10.1038/s41385-021-00389-4.Search in Google Scholar
Chandran P, Satthaporn S, Robins A, Eremin O. Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (I). Surgeon. 2003;1(2):63-75; DOI:10.1016/s1479-666x(03)80118-x.Search in Google Scholar
Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478-85; DOI:10.1038/nri1373.Search in Google Scholar
Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev. 1998;62(4):1157-70; DOI:10.1128/ MMBR.62.4.1157-1170.1998.Search in Google Scholar
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313-23; DOI:10.1038/nri2515.Search in Google Scholar
Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507-10; DOI:10.1038/nature07450.Search in Google Scholar
Abrams GD, Bauer H, Sprinz H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ--free and conventional mice. Lab Invest. 1963;12:355-64.Search in Google Scholar
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492-506; DOI:10.1038/ s41422-020-0332-7.Search in Google Scholar
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313-23; DOI:10.1038/nri2515.Search in Google Scholar
Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA. 2008;105(52):20858-63; DOI:10.1073/pnas.0808723105.Search in Google Scholar
Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313(5790):1126-30; DOI:10.1126/science.1127119.Search in Google Scholar
Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334(6053):255-8; DOI:10.1126/science.1209791.Search in Google Scholar
Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology. 2014;147(6):1363-77.e17; DOI:10.1053/j.gastro.2014.08.033.Search in Google Scholar
Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, Sato S, Tsujimura T, Yamamoto M, Yokota Y, Kiyono H, Miyasaka M, Ishii KJ, Akira S. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol. 2008;9(7):769-76; DOI:10.1038/ni.1622.Search in Google Scholar
Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1(1):11-22; DOI:10.1038/mi.2007.6.Search in Google Scholar
Hansen IS, Baeten DLP, den Dunnen J. The inflammatory function of human IgA. Cell Mol Life Sci. 2019;76(6):1041-1055; DOI:10.1007/ s00018-018-2976-8.Search in Google Scholar
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485-98; DOI:10.1016/j.cell.2009.09.033.Search in Google Scholar
Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, Suda W, Imaoka A, Setoyama H, Nagamori T, Ishikawa E, Shima T, Hara T, Kado S, Jinnohara T, Ohno H, Kondo T, Toyooka K, Watanabe E, Yokoyama S, Tokoro S, Mori H, Noguchi Y, Morita H, Ivanov II, Sugiyama T, Nuñez G, Camp JG, Hattori M, Umesaki Y, Honda K. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163(2):367-80; DOI:10.1016/j.cell.2015.08.058.Search in Google Scholar
Sano T, Huang W, Hall JA, Yang Y, Chen A, Gavzy SJ, Lee JY, Ziel JW, Miraldi ER, Domingos AI, Bonneau R, Littman DR. An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses. Cell. 2015;163(2):381-93; DOI:10.1016/j.cell.2015.08.061.Search in Google Scholar
Konieczna P, Ferstl R, Ziegler M, Frei R, Nehrbass D, Lauener RP, Akdis CA, O’Mahony L. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PLoS One. 2013;8(5):e62617; DOI:10.1371/ journal.pone.0062617.Search in Google Scholar
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly--Y M, Glickman JN, Garrett WS. The microbial metabolites, short--chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569-73; DOI:10.1126/science.1241165.Search in Google Scholar
Soysal P, Arik F, Smith L, Jackson SE, Isik AT. Inflammation, frailty and cardiovascular disease. Adv Exp Med Biol. 2020;1216:55-64; DOI:10.1007/978-3-030-33330-0_7.Search in Google Scholar
Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812-7; DOI:10.2337/diabetes.52.3.812.Search in Google Scholar
Vekic J, Stefanovic A, Zeljkovic A. Obesity and Dyslipidemia: A Review of Current Evidence. Curr Obes Rep. 2023;12(3):207-222; DOI:10.1007/ s13679-023-00518-z.Search in Google Scholar
Saba AB, Ajibade T. Role of lipoproteins in carcinogenesis and in chemo-prevention. In: Frank S, Kostner G, editors. Lipoproteins – role in health and diseases [Internet]. London: InTech; 2012 [cited 2024 Jul 20]. Chapter 27. Available from: http://dx.doi.org/10.5772/46065.Search in Google Scholar
Jukema RA, Ahmed TAN, Tardif JC. Does low-density lipoprotein cholesterol induce inflammation? If so, does it matter? Current insights and future perspectives for novel therapies. BMC Med. 2019;17(1):197; DOI:10.1186/s12916-019-1433-3.Search in Google Scholar
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72; DOI:10.2337/db06-1491.Search in Google Scholar
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015-25; DOI:10.1172/JCI28898.Search in Google Scholar
Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779-786; DOI:10.1016/j. cmet.2014.07.003.Search in Google Scholar
Czajkowska A, Szponar B. Short chain fatty acids (SCFA), the products of gut bacteria metabolism and their role in the host. Postepy Hig Med Dosw 2018; 72:131-42, doi:10.5604/01.3001.0011.6468.Search in Google Scholar
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut micro-biota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691-6; DOI:10.1073/ pnas.1005963107.Search in Google Scholar
Hosmer J, McEwan AG, Kappler U. Bacterial acetate metabolism and its influence on human epithelia. Emerg Top Life Sci. 2024;8(1):1-13; DOI:10.1042/ETLS20220092.Search in Google Scholar
Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010;1801(11):1175-83; DOI:10.1016/j.bbalip.2010.07.007.Search in Google Scholar
Shimizu J, Kubota T, Takada E, Takai K, Fujiwara N, Arimitsu N, Murayama MA, Ueda Y, Wakisaka S, Suzuki T, Suzuki N. Propionate-producing bacteria in the intestine may associate with skewed responses of IL10-producing regulatory T cells in patients with relapsing polychondritis. PLoS One. 2018;13(9):e0203657; DOI:10.1371/journal.pone.0203657.Search in Google Scholar
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, “The sentinel of gut”: their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Micro-biol. 2023;13:1103836; DOI:10.3389/fmicb.2022.1103836.Search in Google Scholar
Khan S, Jena G. Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin. Chem Biol Interact. 2016;254:124-34; DOI:10.1016/j. cbi.2016.06.007.Search in Google Scholar
den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, Bakker BM. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64(7):2398-408; DOI:10.2337/db14-1213.Search in Google Scholar
Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-17; DOI:10.2337/db08-1637.Search in Google Scholar
Fang W, Xue H, Chen X, Chen K, Ling W. Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice. J Nutr. 2019;149(5):747-54; DOI:10.1093/jn/nxy324.Search in Google Scholar
Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propio-nate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240; DOI:10.1371/journal.pone.0035240.Search in Google Scholar
Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by rgulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6:37589; DOI:10.1038/ srep37589.Search in Google Scholar
Aguilar EC, da Silva JF, Navia-Pelaez JM, Leonel AJ, Lopes LG, Menezes--Garcia Z, Ferreira AVM, Capettini LDSA, Teixeira LG, Lemos VS, Alvarez-Leite JI. Sodium butyrate modulates adipocyte expansion, adipo-genesis, and insulin receptor signaling by upregulation of PPAR-γ in obese Apo E knockout mice. Nutrition. 2018;47:75-82; DOI:10.1016/j. nut.2017.10.007.Search in Google Scholar
Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010;1801(11):1175-83; DOI:10.1016/j.bbalip.2010.07.007.Search in Google Scholar
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91-119; DOI:10.1016/B978-0-12-800100-4.00003-9.Search in Google Scholar
Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA. 2011;108(19):8030-5; DOI:10.1073/ pnas.1016088108.Search in Google Scholar
Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA. 2004;101(4):1045-50; DOI:10.1073/pnas.2637002100.Search in Google Scholar
Patel AK, Singhania RR, Pandey A, Chincholkar SB. Probiotic bile salt hydrolase: current developments and perspectives. Appl Biochem Biotechnol. 2010;162(1):166-80; DOI:10.1007/s12010-009-8738-1.Search in Google Scholar
Deng C, Pan J, Zhu H, Chen ZY. Effect of gut microbiota on blood cholesterol: a review on mechanisms. Foods. 2023;12(23):4308; DOI:10.3390/ foods12234308.Search in Google Scholar
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137-50; DOI:10.1097/MIB.0000000000000750.Search in Google Scholar
Ley RE, Bäckhed F, Turnbaugh P, Loźupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102(31):11070-5; DOI:10.1073/pnas.0504978102.Search in Google Scholar
Lee P, Yacyshyn BR, Yacyshyn MB. Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes Obes Metab. 2019;21(3):479-90; DOI:10.1111/dom.13561.Search in Google Scholar
Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr. 2020;123(10):1127-1137; DOI:10.1017/ S0007114520000380.Search in Google Scholar
Woting A, Pfeiffer N, Loh G, Klaus S, Blaut M. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. mBio. 2014;5(5):e01530-14; DOI:10.1128/mBio.01530-14.Search in Google Scholar
Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICRO-Obes Consortium; Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426-36; DOI:10.1136/gutjnl-2014-308778.Search in Google Scholar
de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásqueź-Mejía EP, Carmona JA, Abad JM, Escobar JS. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54-62; DOI:10.2337/dc16-1324.Search in Google Scholar
Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri JM, Moreno LA, Martin-Matillas M, Campoy C, Martí A, Moleres A, Delgado M, Veiga OL, García-Fuentes M, Redondo CG, Sanź Y. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond). 2009;33(7):758-67; DOI:10.1038/ijo.2008.260.Search in Google Scholar
Maioli TU, Borras-Nogues E, Torres L, Barbosa SC, Martins VD, Langella P, Azevedo VA, Chatel JM. Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Front Pharmacol. 2021;12:740636; DOI:10.3389/fphar.2021.740636.Search in Google Scholar
Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The Gut microbiota and inflammation: an overview. Int J Environ Res Public Health. 2020;17(20):7618; DOI:10.3390/ijerph17207618.Search in Google Scholar
Mack DR. Probiotics-mixed messages. Can Fam Physician. 2005;51(11):1455-7.Search in Google Scholar
Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol. 2023;29(14):2078-100; DOI:10.3748/wjg.v29. i14.2078.Search in Google Scholar
Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017;61(1); DOI:10.1002/ mnfr.201600240.Search in Google Scholar
Everard A, Laźarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, Del-źenne NM, Schrenźel J, François P, Cani PD. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 2014;8(10):2116-30; DOI:10.1038/ismej.2014.45.Search in Google Scholar
Respondek F, Gerard P, Bossis M, Boschat L, Bruneau A, Rabot S, Wagner A, Martin JC. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS One. 20138(8):e71026; DOI:10.1371/journal. pone.0071026.Search in Google Scholar
Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73(1):147-62; DOI:10.1007/s00018-015-2061-5.Search in Google Scholar
Simon MC, Strassburger K, Nowotny B, Kolb H, Nowotny P, Burkart V, Zivehe F, Hwang JH, Stehle P, Pacini G, Hartmann B, Holst JJ, MacKenzie C, Bindels LB, Martinez I, Walter J, Henrich B, Schloot NC, Roden M. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care. 2015;38(10):1827-34; DOI:10.2337/dc14-2690.Search in Google Scholar
Aron-Wisnewsky J, Clément K, Nieuwdorp M. Fecal microbiota transplantation: a future therapeutic option for obesity/diabetes? Curr Diab Rep. 2019;19(8):51; DOI:10.1007/s11892-019-1180-z.Search in Google Scholar
Kulecka M, Paziewska A, Zeber-Lubecka N, Ambrozkiewicz F, Kopczynski M, Kuklinska U, Pysniak K, Gajewska M, Mikula M, Ostrowski J. Prolonged transfer of feces from the lean mice modulates gut micro-biota in obese mice. Nutr Metab (Lond). 2016;13(1):57; DOI:10.1186/ s12986-016-0116-8.Search in Google Scholar
Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41; DOI:10.1126/scitranslmed.3005687.Search in Google Scholar
Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6. e7; DOI:10.1053/j.gastro.2012.06.031.Search in Google Scholar