INFORMAZIONI SU QUESTO ARTICOLO

Cita

Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007;35:495–516; DOI:10.1080/01926230701320337.ElmoreSApoptosis: A Review of Programmed Cell DeathToxicol Pathol20073549551610.1080/01926230701320337Open DOISearch in Google Scholar

Fulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: Cell survival and cell death. Int J Cell Biol. 2010;2010; DOI:10.1155/2010/214074.FuldaSGormanAMHoriOSamaliACellular stress responses: Cell survival and cell deathInt J Cell Biol2010201010.1155/2010/214074Open DOISearch in Google Scholar

Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: A review. Biochim Biophys Acta - Mol Cell Res. 2011;1813:238–59; DOI:10.1016/j.bbamcr.2010.10.010.PorttLNormanGClappCGreenwoodMGreenwoodMTAnti-apoptosis and cell survival: A reviewBiochim Biophys Acta - Mol Cell Res201118132385910.1016/j.bbamcr.2010.10.010Open DOISearch in Google Scholar

Suzanne M, Steller H. Shaping organisms with apoptosis. Cell Death Differ. 2013;20:669–75; DOI:10.1038/cdd.2013.11.SuzanneMStellerHShaping organisms with apoptosisCell Death Differ2013206697510.1038/cdd.2013.11Open DOISearch in Google Scholar

Ambrosini A, Gracia M, Proag A, Rayer M, Monier B, Suzanne M. Apoptotic forces in tissue morphogenesis. Mech Dev. 2017;144:33–42; DOI:10.1016/j.mod.2016.10.001.AmbrosiniAGraciaMProagARayerMMonierBSuzanneMApoptotic forces in tissue morphogenesisMech Dev2017144334210.1016/j.mod.2016.10.001Open DOISearch in Google Scholar

Palumbo A, Yeh J. In Situ Localization of Apoptosis in the Rat Ovary during Follicular Atresia1. Biol Reprod. 1994;51:888–95; DOI:10.1095/biolreprod51.5.888.PalumboAYehJIn Situ Localization of Apoptosis in the Rat Ovary during Follicular Atresia1Biol Reprod1994518889510.1095/biolreprod51.5.888Open DOISearch in Google Scholar

Rajapaksha WRAKJS, McBride M, Robertson L, O’Shaughnessy PJ. Sequence of the bovine HDL-receptor (SR-BI) cDNA and changes in receptor mRNA expression during granulosa cell luteinization in vivo and in vitro Mol Cell Endocrinol. 1997;134:59–67; DOI:10.1016/ S0303-7207(97)00173-1.RajapakshaWRAKJSMcBrideMRobertsonLO’ShaughnessyPJ.Sequence of the bovine HDL-receptor (SR-BI) cDNA and changes in receptor mRNA expression during granulosa cell luteinization in vivo and in vitroMol Cell Endocrinol1997134596710.1016/S0303-7207(97)00173-1Open DOISearch in Google Scholar

Richards JAS, Ascoli M. Endocrine, Paracrine, and Autocrine Signaling Pathways That Regulate Ovulation. Trends Endocrinol Metab. 2018;29:313–25; DOI:10.1016/j.tem.2018.02.012.RichardsJASAscoliMEndocrine, Paracrine, and Autocrine Signaling Pathways That Regulate OvulationTrends Endocrinol Metab2018293132510.1016/j.tem.2018.02.01229602523Open DOISearch in Google Scholar

Robker RL, Hennebold JD, Russell DL. Coordination of ovulation and oocyte maturation: A good egg at the right time. Endocrinology. 2018;159:3209–18; DOI:10.1210/en.2018-00485.RobkerRLHenneboldJDRussellDLCoordination of ovulation and oocyte maturation: A good egg at the right timeEndocrinology201815932091810.1210/en.2018-00485645696430010832Open DOISearch in Google Scholar

Peter A, Dhanasekaran N. Apoptosis of Granulosa Cells: A Review on the Role of MAPK-signalling modules. Reprod Domest Anim. 2003;38:209–13; DOI:10.1046/j.1439-0531.2003.00438.x.PeterADhanasekaranNApoptosis of Granulosa Cells: A Review on the Role of MAPK-signalling modulesReprod Domest Anim2003382091310.1046/j.1439-0531.2003.00438.x12753555Open DOISearch in Google Scholar

Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell. 1996;87:629–38; DOI:10.1016/S0092-8674(00)81383-5.WangHGRappURReedJCBcl-2 targets the protein kinase Raf-1 to mitochondriaCell1996876293810.1016/S0092-8674(00)81383-5Open DOISearch in Google Scholar

Park SA, Joo NR, Park JH, Oh SM. Role of the SIRT1/p53 regulatory axis in oxidative stress‑mediated granulosa cell apoptosis. Mol Med Rep. 2020;23; DOI:10.3892/mmr.2020.11658.ParkSAJooNRParkJHOhSMRole of the SIRT1/p53 regulatory axis in oxidative stress‑mediated granulosa cell apoptosisMol Med Rep20202310.3892/mmr.2020.11658Open DOISearch in Google Scholar

Tilly KI, Banerjee S, Banerjee PP, Tilly JL. Expression of the p53 and wilms’ tumor suppressor genes in the rat ovary: Gonadotropin repression in vivo and immunohistochemical localization of nuclear p53 protein to apoptotic granulosa cells of atretic follicles. Endocrinology. 1995;136:1394–402; DOI:10.1210/endo.136.4.7895650.TillyKIBanerjeeSBanerjeePPTillyJLExpression of the p53 and wilms’ tumor suppressor genes in the rat ovary: Gonadotropin repression in vivo and immunohistochemical localization of nuclear p53 protein to apoptotic granulosa cells of atretic folliclesEndocrinology1995136139440210.1210/endo.136.4.7895650Open DOISearch in Google Scholar

Nagata S. Apoptosis by death factor. Cell. 1997;88:355–65; DOI:10.1016/S0092-8674(00)81874-7.NagataSApoptosis by death factorCell1997883556510.1016/S0092-8674(00)81874-7Open DOISearch in Google Scholar

Brązert M, Kranc W, Celichowski P, Ożegowska K, Budna-Tukan J, Jeseta M, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B. Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach. Mol Med Rep. 2019;20:4403–14; DOI:10.3892/mmr.2019.10709.BrązertMKrancWCelichowskiPOżegowskaKBudna-TukanJJesetaMPawelczykLBruskaMZabelMNowickiMKempistyB.Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approachMol Med Rep20192044031410.3892/mmr.2019.10709Open DOISearch in Google Scholar

Kranc W, Brązert M, Budna J, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Chermuła B, Dyszkiewicz-Konwińska M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Bruska M, Nowicki M, Zabel M, Kempisty B. Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem Cell Biol. 2019;151:125–43; DOI:10.1007/s00418-018-1750-1.KrancWBrązertMBudnaJCelichowskiPBryjaANawrockiMJOżegowskaKJankowskiMChermułaBDyszkiewicz-KonwińskaMJesetaMPawelczykLBręborowiczARachońDBruskaMNowickiMZabelMKempistyB.Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro cultureHistochem Cell Biol20191511254310.1007/s00418-018-1750-1Open DOISearch in Google Scholar

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.ChomczynskiPSacchiNSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem1987162156910.1016/0003-2697(87)90021-2Open DOISearch in Google Scholar

Sun YC, Sun XF, Dyce PW, Shen W, Chen H. The role of germ cell loss during primordial follicle assembly: A review of current advances. Int J Biol Sci. 2017;13:449–57; DOI:10.7150/ijbs.18836.SunYCSunXFDycePWShenWChenHThe role of germ cell loss during primordial follicle assembly: A review of current advancesInt J Biol Sci2017134495710.7150/ijbs.18836Open DOISearch in Google Scholar

Vaskivuo TE, Tapanainen JS. Apoptosis in the human ovary. Reprod Biomed Online. 2003;6:24–35; DOI:10.1016/S1472-6483(10)62052-4.VaskivuoTETapanainenJSApoptosis in the human ovaryReprod Biomed Online20036243510.1016/S1472-6483(10)62052-4Open DOISearch in Google Scholar

Marcozzi S, Rossi V, Salustri A, Defelici M, Klinger FG. Programmed cell death in the human ovary. Minerva Ginecol. 2018;70:549–60; DOI:10.23736/S0026-4784.18.04274-0.MarcozziSRossiVSalustriADefeliciMKlingerFGProgrammed cell death in the human ovaryMinerva Ginecol2018705496010.23736/S0026-4784.18.04274-029999289Open DOISearch in Google Scholar

Hughes CK, Pate JL. Luteolysis and the Corpus Luteum of Pregnancy. The Ovary, Elsevier; 2019: 269–92; DOI:10.1016/b978-0-12-813209-8.00017-0.HughesCKPateJLLuteolysis and the Corpus Luteum of PregnancyThe Ovary, Elsevier;2019269–9210.1016/b978-0-12-813209-8.00017-0Open DOISearch in Google Scholar

Pate JL. Luteolysis. Encycl. Reprod., Elsevier; 2018:106–13; DOI:10.1016/B978-0-12-801238-3.64397-0.PateJLLuteolysisEncycl Reprod., Elsevier;2018106–1310.1016/B978-0-12-801238-3.64397-0Open DOISearch in Google Scholar

Cox E, Takov V. Embryology, Ovarian Follicle Development. StatPearls Publishing; 2018.CoxETakovVEmbryology, Ovarian Follicle DevelopmentStatPearls Publishing;2018Search in Google Scholar

Boumela I, Guillemin Y, Guérin JF, Aouacheria A. The Bcl-2 family pathway in gametes and preimplantation embryos. Gynecol Obstet Fertil. 2009;37:720–32; DOI:10.1016/j.gyobfe.2009.06.004.BoumelaIGuilleminYGuérinJFAouacheriaAThe Bcl-2 family pathway in gametes and preimplantation embryosGynecol Obstet Fertil2009377203210.1016/j.gyobfe.2009.06.004Open DOISearch in Google Scholar

Alton M, Taketo T. Switch from BAX-dependent to BAX-independent germ cell loss during the development of fetal mouse ovaries. J Cell Sci. 2007;120:417–24; DOI:10.1242/jcs.03332.AltonMTaketoTSwitch from BAX-dependent to BAX-independent germ cell loss during the development of fetal mouse ovariesJ Cell Sci20071204172410.1242/jcs.03332Open DOISearch in Google Scholar

Gürsoy E, Ergin K, Başaloǧlu H, Koca Y, Seyrek K. Expression and localization of Bcl-2 and BAX proteins in developing rat ovary. Res Vet Sci. 2008;84:56–61; DOI:10.1016/j.rvsc.2007.04.006.GürsoyEErginKBaşaloǧluHKocaYSeyrekK.Expression and localization of Bcl-2 and BAX proteins in developing rat ovaryRes Vet Sci200884566110.1016/j.rvsc.2007.04.006Open DOISearch in Google Scholar

Gebauer G, Peter AT, Onesime D, Dhanasekaran N. Apoptosis of ovarian granulosa cells: Correlation with the reduced activity of ERK-signaling module. J Cell Biochem. 1999;75:547–54; DOI:10.1002/ (SICI)1097-4644(19991215)75:4<547::AID-JCB1>3.0.CO;2-5.GebauerGPeterATOnesimeDDhanasekaranNApoptosis of ovarian granulosa cells: Correlation with the reduced activity of ERK-signaling moduleJ Cell Biochem1999755475410.1002/(SICI)1097-4644(19991215)75:4<547::AID-JCB1>3.0.CO;2-5Open DOISearch in Google Scholar

Lobach VN, Casalechi M, Dela Cruz C, Pereira MT, Del Puerto HL, Reis FM. Caspase-3 gene expression in human luteinized granulosa cells is inversely correlated with the number of oocytes retrieved after controlled ovarian stimulation. Hum Fertil. 2019;22:33–8; DOI:10.1080/1464 7273.2017.1356474.LobachVNCasalechiMDelaCruz CPereiraMTDelPuerto HLReisFM.Caspase-3 gene expression in human luteinized granulosa cells is inversely correlated with the number of oocytes retrieved after controlled ovarian stimulationHum Fertil20192233810.1080/14647273.2017.1356474Open DOISearch in Google Scholar

An HK, Chung KM, Park H, Hong J, Gim JE, Choi H, Lee YW, Choi J, Mun JY, Yu SW. CASP9 (caspase 9) is essential for autophagosome maturation through regulation of mitochondrial homeostasis. Autophagy. 2020;16:1598–617; DOI:10.1080/15548627.2019.1695398.AnHKChungKMParkHHongJGimJEChoiHLeeYWChoiJMunJYYuSWCASP9 (caspase 9) is essential for autophagosome maturation through regulation of mitochondrial homeostasisAutophagy202016159861710.1080/15548627.2019.1695398Open DOISearch in Google Scholar

eISSN:
2544-3577
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biochemistry