Accesso libero

Cardiac Stem Cell Therapy, Resident Progenitor Cells and the role of Cellular Signalling; a Review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

World Health Organisation. Cardiovascular diseases (CVDs) 2017 https://www.who.int/news-room/fact-sheets/detail/cardiovascular-di-seases-(cvds) (accessed September 15, 2019).World Health Organisation. Cardiovascular diseases (CVDs)2017https://www.who.int/news-room/fact-sheets/detail/cardiovascular-di-seases-(cvds)accessed September 15, 2019Search in Google Scholar

Wilkins E, L. W, Wickramasinghe K, P B. European Cardiovascular Disease Statistics 2017 edition. Eur Hear Netw. 2017:8–15; 94, 118, 127, 149, 162, 174.WilkinsEL. WWickramasingheKP B. European Cardiovascular Disease Statistics2017editionEur Hear Netw201781594, 118, 127, 149, 162, 174Search in Google Scholar

World Health Organisation. Obesity and overweight 2018https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed September 15, 2019).World Health Organisation. Obesity and overweight2018https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweightaccessed September 15, 2019Search in Google Scholar

WHO global report on trends in prevalence of tobacco smoking 2000-2025 , second edition ISBN 978-92-4-151417-0.WHO global report on trends in prevalence of tobacco smoking 2000-2025second edition ISBN 978-92-4-151417-0Search in Google Scholar

Amini H, Rezaie J, Vosoughi A, Rahbarghazi R, Nouri M. Cardiac progenitor cells application in cardiovascular disease. J Cardiovasc Thorac Res. 2017;9:127–32; DOI:10.15171/jcvtr.2017.22.AminiHRezaieJVosoughiARahbarghaziRNouriMCardiac progenitor cells application in cardiovascular diseaseJ Cardiovasc Thorac Res201791273210.15171/jcvtr.2017.22Open DOISearch in Google Scholar

Barile L, Cervio E, Lionetti V, Milano G, Ciullo A, Biemmi V, Bolis S, Altomare C, Matteucci M, Di Silvestre D, Brambilla F, Fertig TE, Torre T, Demertzis S, Mauri P, Moccetti T, Vassalli G. Cardioprotection by cardiac progenitor cell-secreted exosomes: Role of pregnancy-associated plasma protein-A. Cardiovasc Res. 2018;114:992–1005; DOI:10.1093/cvr/cvy055.BarileLCervioELionettiVMilanoGCiulloABiemmiVBolisSAltomareCMatteucciMDi SilvestreDBrambillaFFertigTETorreTDemertzisSMauriPMoccettiTVassalliGCardioprotection by cardiac progenitor cell-secreted exosomes: Role of pregnancy-associated plasma protein-ACardiovasc Res2018114992100510.1093/cvr/cvy055Open DOISearch in Google Scholar

Gartz M, Strande JL. Examining the paracrine effects of exosomes in cardiovascular disease and repair. J Am Heart Assoc. 2018;7:1–13; DOI:10.1161/JAHA.117.007954.GartzMStrandeJLExamining the paracrine effects of exosomes in cardiovascular disease and repairJ Am Heart Assoc2018711310.1161/JAHA.117.007954Open DOISearch in Google Scholar

Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, Pu W, Tian X, Li Y, Liu Q, Yu W, Zhang L, Liu X, Liu K, Tang J, Zhang H, Cai D, Ralf AH, Xu Q, Lui KO, Zhou B. Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation. 2018;138:793–805; DOI:10.1161/CIRCULATIONAHA.118.034250.LiYHeLHuangXBhalooSIZhaoHZhangSPuWTianXLiYLiuQYuWZhangLLiuXLiuKTangJZhangHCaiDRalfAHXuQLuiKOZhouBGenetic lineage tracing of nonmyocyte population by dual recombinasesCirculation201813879380510.1161/CIRCULATIONAHA.118.034250Open DOISearch in Google Scholar

Le T, Chong J. Cardiac progenitor cells for heart repair. Cell Death Discov. 2016;2:1–4; DOI:10.1038/cddiscovery.2016.52.LeTChongJCardiac progenitor cells for heart repairCell Death Discov201621410.1038/cddiscovery.2016.52Open DOISearch in Google Scholar

Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57; DOI:10.1016/S0140-6736(11)61590-0.BolliRChughARD’AmarioDLoughranJHStoddardMFIkramSBeacheGMWagnerSGLeriAHosodaTSanadaFElmoreJBGoichbergPCappettaDSolankhiNKFahsahIRokoshDGSlaughterMSKajsturaJAnversaPCardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trialLancet201137818475710.1016/S0140-6736(11)61590-0Open DOISearch in Google Scholar

Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LEJ, Berman D, Czer LSC, Marbán L, Mendizabal A, Johnston P V, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E. NIH Public Access 2015;379:895– 904; DOI:10.1016/S0140-6736(12)60195-0.Intracoronary.MakkarRRSmithRRChengKMalliarasKThomsonLEJBermanDCzerLSCMarbánLMendizabalAJohnstonP VRussellSDSchuleriKHLardoACGerstenblithGMarbánENIH Public Access201537989590410.1016/S0140-6736(12)60195-0IntracoronaryOpen DOISearch in Google Scholar

Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfò M, Agosti V, Viglietto G, Condorelli G, Indolfi C, Ottolenghi S, Torella D, Nadal-Ginard B. Adult c-kitpos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154:827–42; DOI:10.1016/j.cell.2013.07.039.EllisonGMVicinanzaCSmithAJAquilaILeoneAWaringCDHenningBJStirparoGGPapaitRScarfòMAgostiVVigliettoGCondorelliGIndolfiCOttolenghiSTorellaDNadal-GinardBAdult c-kitpos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repairCell20131548274210.1016/j.cell.2013.07.03923953114Open DOISearch in Google Scholar

Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, Jeong D, Sheng W, Bu L, Xu M, Huang GY, Hajjar RJ, Zhou B, Moon A, Cai CL. Resident c-kit + cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:1–10; DOI:10.1038/ncomms9701.SultanaNZhangLYanJChenJCaiWRazzaqueSJeongDShengWBuLXuMHuangGYHajjarRJZhouBMoonACaiCLResident c-kit + cells in the heart are not cardiac stem cellsNat Commun2015611010.1038/ncomms9701484631826515110Open DOISearch in Google Scholar

Vagnozzi RJ, Sargent MA, Lin SCJ, Palpant NJ, Murry CE, Molkentin JD. Genetic lineage tracing of Sca-1+ cells reveals endothelial but not myogenic contribution to the murine heart. Circulation. 2018;138:2931–9; DOI:10.1161/CIRCULATIONAHA.118.035210.VagnozziRJSargentMALinSCJPalpantNJMurryCEMolkentinJDGenetic lineage tracing of Sca-1+ cells reveals endothelial but not myogenic contribution to the murine heartCirculation20181382931910.1161/CIRCULATIONAHA.118.035210684399029991486Open DOISearch in Google Scholar

Gallet R, Marban E. Cardiosphere - derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction. Vol. 1. 2019.GalletRMarbanECardiosphere - derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fractionVol. 12019Search in Google Scholar

Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X, Li J, Zhang G, Huang J, Lin Z, Xiong N, Wang T. Exosomes and their therapeutic potentials of stem cells. Stem Cells Int. 2016;2016; DOI:10.1155/2016/7653489.HanCSunXLiuLJiangHShenYXuXLiJZhangGHuangJLinZXiongNWangTExosomes and their therapeutic potentials of stem cellsStem Cells Int2016201610.1155/2016/7653489Open DOISearch in Google Scholar

Xu MY, Ye ZS, Song XT, Huang RC. Differences in the cargos and functions of exosomes derived from six cardiac cell types: A systematic review. Stem Cell Res Ther. 2019;10:1–11; DOI:10.1186/s13287-019-1297-7.XuMYYeZSSongXTHuangRCDifferences in the cargos and functions of exosomes derived from six cardiac cell types: A systematic reviewStem Cell Res Ther20191011110.1186/s13287-019-1297-7Open DOISearch in Google Scholar

Page C. Cellular Communication in Cardiac Regeneration Janita A . Maring. 2019.PageCCellular Communication in Cardiac Regeneration Janita AMaring2019Search in Google Scholar

Drowley L, McPheat J, Nordqvist A, Peel S, Karlsson U, Martinsson S, Müllers E, Dellsén A, Knight S, Barrett I, Sánchez J, Magnusson B, Greber B, Wang QD, Plowright AT. Discovery of Retinoic Acid Receptor Agonists as Proliferators of Cardiac Progenitor Cells Through a Phenotypic Screening Approach n.d. Stem Cells Translational Medicine. 2019. DOI:10.1002/sctm.19-0069.DrowleyLMcPheatJNordqvistAPeelSKarlssonUMartinssonSMüllersEDellsénAKnightSBarrettISánchezJMagnussonBGreberBWangQDPlowrightATDiscovery of Retinoic Acid Receptor Agonists as Proliferators of Cardiac Progenitor Cells Through a Phenotypic Screening Approach n.d. Stem Cells Translational Medicine201910.1002/sctm.19-0069Open DOISearch in Google Scholar

Stuckmann I, Evans S, Lassar AB. Erythropoietin and retinoic acid , secreted from the epicardium , are required for cardiac myocyte proliferation 2003;255:334–49; DOI:10.1016/S0012-1606(02)00078-7.StuckmannIEvansSLassarABErythropoietin and retinoic acid , secreted from the epicardium , are required for cardiac myocyte proliferation20032553344910.1016/S0012-1606(02)00078-7Open DOISearch in Google Scholar

Andrade D, Oliveira G, Menezes L, Nascimento AL, Stumbo AC, Thole A, Garcia-souza É, Carvalho L, Cortez E. Insulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese mice. Nutr Metab Cardiovasc Dis. 2019; DOI:10.1016/j.numecd.2019.09.001.AndradeDOliveiraGMenezesLNascimentoALStumboACTholeAGarcia-souzaÉCarvalhoLCortezEInsulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese miceNutr Metab Cardiovasc Dis201910.1016/j.numecd.2019.09.00131753790Open DOISearch in Google Scholar

Perez-martinez C, Prado P De, Vicinanza C, Purushothaman S, Bs C, Galuppo V, Iaconetti C, Waring CD, Smith A, Torella M, Ramon CC, Gonzalo-orden JM, Agosti V, Indolfi C, Galiñanes M, Fernandez-vazquez F, Nadal-ginard B. Endogenous Cardiac Stem Cell Activation by Insulin-Like Growth Factor-1 / Hepatocyte Growth Factor Intracoronary Injection Fosters Survival and Regeneration of the Infarcted Pig Heart. JAC. 2011;58:977–86; DOI:10.1016/j.jacc.2011.05.013.Perez-martinezCPradoP DeVicinanzaCPurushothamanSBsCGaluppoVIaconettiCWaringCDSmithATorellaMRamonCCGonzalo-ordenJMAgostiVIndolfiCGaliñanesMFernandez-vazquezFNadal-ginardBEndogenous Cardiac Stem Cell Activation by Insulin-Like Growth Factor-1 / Hepatocyte Growth Factor Intracoronary Injection Fosters Survival and Regeneration of the Infarcted Pig HeartJAC2011589778610.1016/j.jacc.2011.05.01321723061Open DOISearch in Google Scholar

Alam P, Haile B, Arif M, Pandey R, Rokvic M, Nieman M, Maliken BD, Paul A, Wang Y, Sadayappan S, Ahmed RPH, Kanisicak O. Inhibition of Senescence‐Associated Genes Rb1 and Meis2 in Adult Cardiomyocytes Results in Cell Cycle Reentry and Cardiac Repair Post–Myocardial Infarction . J Am Heart Assoc. 2019;8; DOI:10.1161/jaha.119.012089.AlamPHaileBArifMPandeyRRokvicMNiemanMMalikenBDPaulAWangYSadayappanSAhmedRPHKanisicakOInhibition of Senescence‐Associated Genes Rb1 and Meis2 in Adult Cardiomyocytes Results in Cell Cycle Reentry and Cardiac Repair Post–Myocardial InfarctionJ Am Heart Assoc2019810.1161/jaha.119.012089Open DOISearch in Google Scholar

Shin J, Choi S, Kim JH, Cho JH, Jin Y, Kim S, Min S, Kim SK, Choi D, Cho S. Tissue Tapes — Phenolic Hyaluronic Acid Hydrogel Patches for Off-the-Shelf Therapy 2019;1903863:1–15; DOI:10.1002/adfm.201903863.ShinJChoiSKimJHChoJHJinYKimSMinSKimSKChoiDChoSTissue Tapes — Phenolic Hyaluronic Acid Hydrogel Patches for Off-the-Shelf Therapy2019190386311510.1002/adfm.201903863Open DOISearch in Google Scholar

Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell. 2018;173:104-116.e12; DOI:10.1016/j.cell.2018.02.014.MohamedTMAAngYSRadzinskyEZhouPHuangYElfenbeinAFoleyAMagnitskySSrivastavaDRegulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac RegenerationCell2018173104116e1210.1016/j.cell.2018.02.014597378629502971Open DOISearch in Google Scholar

Jha S, Rollins MG, Fuchs G, Procter DJ, Hall EA, Cozzolino K, Sarnow P, Savas JN, Walsh D. HHS Public Access 2017;546:651–5; DOI:10.1038/nature22814.Trans-kingdom.JhaSRollinsMGFuchsGProcterDJHallEACozzolinoKSarnowPSavasJNWalshDHHS Public Access2017546651510.1038/nature22814.Trans-kingdomOpen DOISearch in Google Scholar

Gao Z, Zhu X, Dou Y. The MIR-302/367 cluster: A comprehensive update on its evolution and functions. Open Biol. 2015;5; DOI:10.1098/rsob.150138.GaoZZhuXDouYThe MIR-302/367 cluster: A comprehensive update on its evolution and functionsOpen Biol2015510.1098/rsob.150138470305626631377Open DOISearch in Google Scholar

Liu W, Wen Y, Bi P, Lai X, Liu XS, Liu X, Kuang S. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Dev. 2012;139:2857–65; DOI:10.1242/dev.079665.LiuWWenYBiPLaiXLiuXSLiuXKuangSHypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantationDev201213928576510.1242/dev.079665340309822764051Open DOISearch in Google Scholar

Tong W, Xiong F, Li Y, Zhang L. Hypoxia inhibits cardiomyocyte proliferation in fetal rat hearts via upregulating TIMP-4. Am J Physiol - Regul Integr Comp Physiol. 2013;304:613–20; DOI:10.1152/ajpregu.00515.2012.TongWXiongFLiYZhangLHypoxia inhibits cardiomyocyte proliferation in fetal rat hearts via upregulating TIMP-4Am J Physiol - Regul Integr Comp Physiol20133046132010.1152/ajpregu.00515.2012362795623427085Open DOISearch in Google Scholar

Paradis AN, Gay MS, Wilson CG, Zhang L. Newborn hypoxia/anoxia inhibits cardiomyocyte proliferation and decreases cardiomyocyte endowment in the developing heart: Role of endothelin-1. PLoS One. 2015;10:1–21; DOI:10.1371/journal.pone.0116600.ParadisANGayMSWilsonCGZhangLNewborn hypoxia/anoxia inhibits cardiomyocyte proliferation and decreases cardiomyocyte endowment in the developing heart: Role of endothelin-1PLoS One20151012110.1371/journal.pone.0116600433465025692855Open DOISearch in Google Scholar

Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, Abderrahman Y, Chen R, Garcia JA, Shelton JM, Richardson JA, Ashour AM, Asaithamby A, Liang H, Xing C, Lu Z, Zhang CC, Sadek HA. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226–30; DOI:10.1038/nature14582.KimuraWXiaoFCansecoDCMuralidharSThetSZhangHMAbderrahmanYChenRGarciaJASheltonJMRichardsonJAAshourAMAsaithambyALiangHXingCLuZZhangCCSadekHAHypoxia fate mapping identifies cycling cardiomyocytes in the adult heartNature20155232263010.1038/nature1458226098368Open DOISearch in Google Scholar

Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Hu Z, Deberardinis RJ, Schiattarella G, Hill JA, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA. Hypoxia induces heart regeneration in adult mice. Nature. 2017;541:222–7; DOI:10.1038/nature20173.NakadaYCansecoDCThetSAbdisalaamSAsaithambyASantosCXShahAMZhangHFaberJEKinterMTSzwedaLIXingCHuZDeberardinisRJSchiattarellaGHillJAOzOLuZZhangCCKimuraWSadekHAHypoxia induces heart regeneration in adult miceNature2017541222710.1038/nature2017327798600Open DOISearch in Google Scholar

Sun Y, Jiang C, Hong H, Liu J, Qiu L, Huang Y, Ye L. Effects of hypoxia on cardiomyocyte proliferation and association with stage of development. Biomed Pharmacother. 2019;118:109391; DOI:10.1016/j. biopha.2019.109391.SunYJiangCHongHLiuJQiuLHuangYYeLEffects of hypoxia on cardiomyocyte proliferation and association with stage of developmentBiomed Pharmacother201911810939110.1016/j.biopha.2019.10939131545287Open DOISearch in Google Scholar

Zhuang LEI, Xia W, Hou M. Co ‑ culturing with hypoxia pre-conditioned mesenchymal stem cells as a new strategy for the prevention of irradiation-induced fibroblast ‑ to ‑ myofibroblast transition 2019:1–12; DOI:10.3892/or.2019.7293.ZhuangLEIXiaWHouMCo ‑ culturing with hypoxia pre-conditioned mesenchymal stem cells as a new strategy for the prevention of irradiation-induced fibroblast ‑ to ‑ myofibroblast transition201911210.3892/or.2019.7293677580631485596Open DOISearch in Google Scholar

Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload. JACC Basic to Transl Sci. 2018;3:230–44; DOI:10.1016/j.jacbts.2017.12.006.PatelBBansalSSIsmahilMAHamidTRokoshGMackMPrabhuSDCCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure OverloadJACC Basic to Transl Sci201832304410.1016/j.jacbts.2017.12.006605935030062209Open DOISearch in Google Scholar

Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Front Cardiovasc Med. 2019;6:1–23; DOI:10.3389/fcvm.2019.00032.PsarrasSBeisDNikouliSTsikitisMCapetanakiYThree in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair ProcessesFront Cardiovasc Med2019612310.3389/fcvm.2019.00032645403531001541Open DOISearch in Google Scholar

Doppler SA, Carvalho C, Lahm H, Deutsch MA, Dreßen M, Puluca N, Lange R, Krane M. Cardiac fibroblasts: More than mechanical support. J Thorac Dis. 2017;9:S36–51; DOI:10.21037/jtd.2017.03.122.DopplerSACarvalhoCLahmHDeutschMADreßenMPulucaNLangeRKraneMCardiac fibroblasts: More than mechanical supportJ Thorac Dis20179S365110.21037/jtd.2017.03.122538355828446967Open DOISearch in Google Scholar

Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D. Cardiac Fibroblasts Regulate Myocardial Proliferation through β1 Integrin Signaling. Dev Cell. 2009;16:233–44; DOI:10.1016/j. devcel.2008.12.007.IedaMTsuchihashiTIveyKNRossRSHongTTShawRMSrivastavaDCardiac Fibroblasts Regulate Myocardial Proliferation through β1 Integrin SignalingDev Cell2009162334410.1016/j.devcel.2008.12.007266408719217425Open DOISearch in Google Scholar

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86; DOI:10.1016/j.cell.2010.07.002.IedaMFuJDDelgado-OlguinPVedanthamVHayashiYBruneauBGSrivastavaDDirect reprogramming of fibroblasts into functional cardiomyocytes by defined factorsCell20101423758610.1016/j.cell.2010.07.002291984420691899Open DOISearch in Google Scholar

Inagawa K, Ieda M. Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res. 2013;6:37–45; DOI:10.1007/s12265-012-9412-5.InagawaKIedaMDirect reprogramming of mouse fibroblasts into cardiac myocytesJ Cardiovasc Transl Res20136374510.1007/s12265-012-9412-523054660Open DOISearch in Google Scholar

Min YL, Jaichander P, Sanchez-Ortiz E, Bezprozvannaya S, Malladi VS, Cui M, Wang Z, Bassel-Duby R, Olson EN, Liu N. Identification of a multipotent Twist2-expressing cell population in the adult heart. Proc Natl Acad Sci US A. 2018;115:E8430–9; DOI:10.1073/pnas.1800526115.MinYLJaichanderPSanchez-OrtizEBezprozvannayaSMalladiVSCuiMWangZBassel-DubyROlsonENLiuNIdentification of a multipotent Twist2-expressing cell population in the adult heartProc Natl Acad Sci US A2018115E8430910.1073/pnas.1800526115613035630127033Open DOISearch in Google Scholar

Xu J, Xiong YY, Li Q, Hu MJ, Huang PS, Xu JY, Tian XQ, Jin C, Liu JD, Qian L, Yang YJ. Optimization of Timing and Times for Administration of Atorvastatin-Pretreated Mesenchymal Stem Cells in a Preclinical Model of Acute Myocardial Infarction. Stem Cells Transl Med. 2019;8:1068-1083: DOI: 10.1002/sctm.19-0013XuJXiongYYLiQHuMJHuangPSXuJYTianXQJinCLiuJDQianLYangYJOptimization of Timing and Times for Administration of Atorvastatin-Pretreated Mesenchymal Stem Cells in a Preclinical Model of Acute Myocardial InfarctionStem Cells Transl Med201981068108310.1002/sctm.19-0013676660131245934Open DOISearch in Google Scholar

Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heide F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102; DOI:10.1126/science.1164680.BergmannOBhardwajRDBernardSZdunekSBarnabé-HeideFWalshSZupicichJAlkassKBuchholzBADruidHJovingeSFrisénJEvidence for cardiomyocyte renewal in humansScience20093249810210.1126/science.1164680299114019342590Open DOISearch in Google Scholar

Zebrowski DC, Becker R, Engel FB. Towards regenerating the mammalian heart: Challenges in evaluating experimentally induced adult mammalian cardiomyocyte proliferation. Am J Physiol - Hear Circ Physiol. 2016;310:H1045–54; DOI:10.1152/ajpheart.00697.2015.ZebrowskiDCBeckerREngelFBTowards regenerating the mammalian heart: Challenges in evaluating experimentally induced adult mammalian cardiomyocyte proliferationAm J Physiol - Hear Circ Physiol2016310H10455410.1152/ajpheart.00697.201526921436Open DOISearch in Google Scholar

Ayala‐Mar S, Donoso‐Quezada J, Gallo‐Villanueva RC, Pérez‐González VH, González‐Valdez J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis. 2019:1–14; DOI:10.1002/elps.201800526.Ayala‐MarSDonoso‐QuezadaJGallo‐VillanuevaRCPérez‐GonzálezVHGonzález‐ValdezJRecent advances and challenges in the recovery and purification of cellular exosomesElectrophoresis201911410.1002/elps.201800526697260131373715Open DOISearch in Google Scholar

Trac D, Hoffman JR, Bheri S, Maxwell JT, Platt MO, Davis ME. Predicting Functional Responses of Progenitor Cell Exosome Potential with Computational Modeling. Stem Cells Transl Med. 2019; DOI:10.1002/ sctm.19-0059.TracDHoffmanJRBheriSMaxwellJTPlattMODavisMEPredicting Functional Responses of Progenitor Cell Exosome Potential with Computational ModelingStem Cells Transl Med201910.1002/sctm.19-0059681170131385648Open DOISearch in Google Scholar

Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7:789–804; DOI:10.7150/thno.18133.LiPKaslanMLeeSHYaoJGaoZProgress in exosome isolation techniquesTheranostics2017778980410.7150/thno.18133532765028255367Open DOISearch in Google Scholar

Park JH, Lee NK, Lim HJ, Mazumder S, Rethineswaran VK, Kim YJ, Jang WB, Ji ST, Kang S, Kim DY, Van LTH, Giang LTT, Kim DH, Ha JS, Yun J, Kim H, Han J, Mishchenko NP, Fedoreyev SA, Vasileva EA, Kwon SM, Baek SH. Therapeutic cell protective role of histochrome under oxidative stress in human cardiac progenitor cells. Mar Drugs. 2019;17; DOI:10.3390/md17060368.ParkJHLeeNKLimHJMazumderSRethineswaranVKKimYJJangWBJiSTKangSKimDYVanLTHGiangLTTKimDHHaJSYunJKimHHanJMishchenkoNPFedoreyevSAVasilevaEAKwonSMBaekSHTherapeutic cell protective role of histochrome under oxidative stress in human cardiac progenitor cellsMar Drugs20191710.3390/md17060368662811231234277Open DOISearch in Google Scholar

Birbrair A. Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology. Springer. 2019.BirbrairAStem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and BiologySpringer201910.1007/978-3-030-24108-7Search in Google Scholar

eISSN:
2544-3577
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biochemistry