INFORMAZIONI SU QUESTO ARTICOLO

Cita

1.Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S. Nampt/ PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6(5):363-75; DOI:10.1016/j. cmet.2007.09.003.10.1016/j.cmet.2007.09.003209869817983582Open DOISearch in Google Scholar

2. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115-30; DOI:10.1146/annurev. nutr.28.061807.155443.10.1146/annurev.nutr.28.061807.15544318429699Open DOISearch in Google Scholar

3. Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010; 31(2):194-223; DOI:10.1210/er.2009-0026.10.1210/er.2009-0026285220920007326Open DOISearch in Google Scholar

4. Borradaile NM, Pickering JG. NAD(+), sirtuins, and cardiovascular disease. Curr Pharm Des. 2009;15(1):110-7.10.2174/13816120978718574219149606Open DOISearch in Google Scholar

5. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14(5):661-73; DOI:10.1016/j.devcel.2008.02.004.10.1016/j.devcel.2008.02.004243146718477450Open DOISearch in Google Scholar

6. Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res. 2009; 105(5):481-91; DOI:10.1161/ CIRCRESAHA.109.203703.10.1161/CIRCRESAHA.109.203703276579019661458Open DOISearch in Google Scholar

7. Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase- -1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem. 2005;280(52):43121-30; DOI:10.1074/jbc.M506162200.10.1074/jbc.M50616220016207712Search in Google Scholar

8. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754-63; DOI:10.1074/ jbc.M408388200.10.1074/jbc.M40838820015381699Search in Google Scholar

9. Rongvaux A, Galli M, Denanglaire S, Van Gool F, Dreze PL, Szpirer C, Bureau F, Andris F, Leo O. Nicotinamide phosphoribosyl transferase/ pre-B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J Immunol. 2008;181(7):4685-95.10.4049/jimmunol.181.7.468518802071Search in Google Scholar

10. Song EK, Lee YR, Yu HN, Kim UH, Rah SY, Park KH, Shim IK, Lee SJ, Park YM, Chung WG, Kim JS, Han MK. Extracellular NAD is a regulator for FcgammaR-mediated phagocytosis in murine macrophages. Biochem Biophys Res Commun. 2008;367(1):156-61; DOI:10.1016/j bbrc.2007.12.131.10.1016/j.bbrc.2007.12.131Search in Google Scholar

11. Chen H, Wang S, Zhang H, Nice EC, Huang C. Nicotinamide phosphoribosyltransferase (Nampt) in carcinogenesis: new clinical opportunities. Expert Rev Anticancer Ther. 2016;16(8):827-38; DOI:10.1080/147371 40.2016.1190649.10.1080/14737140.2016.1190649Search in Google Scholar

12. Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome--a key determinant of cancer cell biology. Nat Rev Cancer. 2012;12(11):741-52; DOI:10.1038/nrc3340.10.1038/nrc334023018234Open DOISearch in Google Scholar

13. Shackelford RE, Mayhall K, Maxwell NM, Kandil E, Coppola D. Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes Cancer. 2013;4(11-12):447-56; DOI:10.1177/1947601913507576.10.1177/1947601913507576387766524386506Open DOISearch in Google Scholar

14. Nergiz Avcioglu S, Altinkaya SO, Kucuk M, Yuksel H, Omurlu IK, Yanik S. Visfatin concentrations in patients with endometrial cancer. Gynecol Endocrinol. 2015;31(3):202-7; DOI:10.3109/09513590.2014.975687.10.3109/09513590.2014.97568725377860Open DOISearch in Google Scholar

15. Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y, Hu H, Chen X, Zhou HM, Huang X, Yang K, Zhu Q, Wang X, Yi J, Zhu L, Qian X, Chen L, Tang Y, Loscalzo J, and Yang Y, SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metab. 2015;21(5):777-89; DOI:10.1016/j.cmet.2015.04.009.10.1016/j.cmet.2015.04.009442757125955212Open DOISearch in Google Scholar

16. Bi TQ, Che XM. Nampt/PBEF/visfatin and cancer. Cancer Biol Ther. 2010;10(2):119-25; DOI:10.4161/cbt.10.2.12581.10.4161/cbt.10.2.1258120647743Open DOISearch in Google Scholar

17. Shackelford RE, Bui MM, Coppola D, Hakam A. Over-expression of nicotinamide phosphoribosyltransferase in ovarian cancers. Int J Clin Exp Pathol. 2010;3(5):522-7.Search in Google Scholar

18. Buldak RJ, Buldak L, Polaniak R, Kukla M, Birkner E, Kubina R, Kabala- Dzik A, Dulawa-Buldak A, Zwirska-Korczala K. Visfatin affects redox adaptative responses and proliferation in Me45 human malignant melanoma cells: an in vitro study. Oncol Rep. 2013;29(2):771-8; DOI:10.3892/or.2012.2175.10.3892/or.2012.217523232726Search in Google Scholar

19. Olesen UH, Petersen JG, Garten A, Kiess W, Yoshino J, Imai S, Christensen MK, Fristrup P, Thougaard AV, Bjorkling F, Jensen PB, Nielsen SJ, Sehested M. Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase. BMC Cancer. 2010;10:677; DOI:10.1186/1471-2407-10-677.10.1186/1471-2407-10-677301921221144000Search in Google Scholar

20. Guo J, Lam LT, Longenecker KL, Bui MH, Idler KB, Glaser KB, Wilsbacher JL, Tse C, Pappano WN, Huang TH. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD(+) biosynthesis pathway and NAMPT mutation. Biochem Biophys Res Commun. 2017;491(3):681-686; DOI:10.1016/j.bbrc.2017.07.143.10.1016/j.bbrc.2017.07.14328756225Open DOISearch in Google Scholar

21. Carbone F, Liberale L, Bonaventura A, Vecchie A, Casula M, Cea M, Monacelli F, Caffa I, Bruzzone S, Montecucco F, Nencioni A. Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. Compr Physiol. 2017;7(2):603-621; DOI:10.1002/cphy.c160029.10.1002/cphy.c16002928333382Open DOISearch in Google Scholar

22. Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol. 2015;11(9):535-46; DOI:10.1038/nrendo.2015.117.10.1038/nrendo.2015.11726215259Open DOISearch in Google Scholar

23. Gholinejad Z, Kheiripour N, Nourbakhsh M, Ilbeigi D, Behroozfar K, Hesari Z, Golestani A, Shabani M, Einollahi N. Extracellular NAMPT/ Visfatin induces proliferation through ERK1/2 and AKT and inhibits apoptosis in breast cancer cells. Peptides. 2017;92:9-15; DOI:10.1016/j. peptides.2017.04.007.10.1016/j.peptides.2017.04.00728442350Open DOISearch in Google Scholar

24. Behrouzfar K, Alaee M, Nourbakhsh M, Gholinejad Z, Golestani A. Extracellular NAMPT/visfatin causes p53 deacetylation via NAD production and SIRT1 activation in breast cancer cells. Cell Biochem Funct.2017;35(6):327-333; DOI:10.1002/cbf.3279.10.1002/cbf.327928845527Open DOISearch in Google Scholar

25. Patel ST, Mistry T, Brown JE, Digby JE, Adya R, Desai KM, Randeva HS. A novel role for the adipokine visfatin/pre-B cell colony-enhancing factor 1 in prostate carcinogenesis. Peptides. 2010;31(1):51-7, DOI:10.1016/j. peptides.2009.10.001.10.1016/j.peptides.2009.10.00119819277Open DOISearch in Google Scholar

26. Ninomiya S, Shimizu M, Imai K, Takai K, Shiraki M, Hara T, Tsurumi H, Ishizaki S, Moriwaki H. Possible role of visfatin in hepatoma progression and the effects of branched-chain amino acids on visfatin-induced proliferation in human hepatoma cells. Cancer Prev Res (Phila). 2011;4(12):2092-100; DOI:10.1158/1940-6207.CAPR-11-0340.10.1158/1940-6207.CAPR-11-034021952585Open DOISearch in Google Scholar

27. Mohammadi M, Zarghami N, Hedayati M, Ghaemmaghami S, Yamchi RM, Mohaddes M. Visfatin effects on telomerase gene expression in AGS gastric cancer cell line. Indian J Cancer. 2015;52(1):32-5; DOI:10.4103/0019-509X.175567.10.4103/0019-509X.17556726837965Open DOISearch in Google Scholar

28. Wang G, Tian W, Liu Y, Ju Y, Shen Y, Zhao S, Zhang B, Li Y. Visfatin Triggers the Cell Motility of Non-Small Cell Lung Cancer via Up-Regulation of Matrix Metalloproteinases. Basic Clin Pharmacol Toxicol. 2016;119(6):548- 554; DOI:10.1111/bcpt.12623.10.1111/bcpt.1262327224551Open DOISearch in Google Scholar

29. Reverchon M, Rame C, Bunel A, Chen W, Froment P, Dupont J. VISFATIN (NAMPT) Improves In Vitro IGF1-Induced Steroidogenesis and IGF1 Receptor Signaling Through SIRT1 in Bovine Granulosa Cells. Biol Reprod. 2016;94(3):54; DOI:10.1095/biolreprod.115.134650.10.1095/biolreprod.115.13465026792944Open DOISearch in Google Scholar

30. Diot M, Reverchon M, Rame C, Baumard Y, Dupont J. Expression and effect of NAMPT (visfatin) on progesterone secretion in hen granulosa cells. Reproduction. 2015;150(1):53-63; DOI:10.1530/REP-15-0021.10.1530/REP-15-002125918435Open DOISearch in Google Scholar

31. Diot M, Reverchon M, Rame C, Froment P, Brillard JP, Briere S, Leveque G, Guillaume D, Dupont J. Expression of adiponectin, chemerin and visfatin in plasma and different tissues during a laying season in turkeys. Reprod Biol Endocrinol. 2015;13:81; DOI:10.1186/s12958-015-0081-5.10.1186/s12958-015-0081-5452134826228641Open DOISearch in Google Scholar

32. Ocon-Grove OM, Krzysik-Walker SM, Maddineni SR, Hendricks GL 3rd, Ramachandran R. NAMPT (visfatin) in the chicken testis: influence of sexual maturation on cellular localization, plasma levels and gene and protein expression. Reproduction. 2010;139(1):217-26; DOI:10.1530/REP-08-0377.10.1530/REP-08-037719736255Open DOISearch in Google Scholar

33. Celichowski P, Jopek K, Milecka P, Szyszka M, Tyczewska M, Malendowicz LK, Ruciński M. Nicotinamide phosphoribosyltransferase (Nampt)and the hypothalamic-pituitary-adrenal axis of the rat. Mol Med Rep.2018;17(4):6163-6173; DOI:10.3892/mmr.2018.8569.10.3892/mmr.2018.856929436637Open DOISearch in Google Scholar

34. Trejter M, Hochol A, Tyczewska M, Ziolkowska A, Jopek K, Szyszka M,MalendowiczLK, Rucinski M. Visinin-like peptide 1 in adrenal gland of the rat. Gene expression and its hormonal control. Peptides. 2015;63:22-9; DOI:10.1016/j.peptides.2014.10.017.10.1016/j.peptides.2014.10.01725451331Open DOISearch in Google Scholar

35. Ziolkowska A, Rucinski M, Tyczewska M, Malendowicz LK. Orexin B inhibits proliferation and stimulates specialized function of cultured rat calvarial osteoblast-like cells. Int J Mol Med. 2008;22(6):749-55.Search in Google Scholar

36. Rucinski M, Ziolkowska A, Szyszka M, Hochol A, Malendowicz LK. Evidence suggesting that ghrelin O-acyl transferase inhibitor acts at the hypothalamus to inhibit hypothalamo-pituitary-adrenocortical axis function in the rat. Peptides. 2012; 35(2):149-59; DOI:10.1016/j. peptides.2012.04.007.10.1016/j.peptides.2012.04.00722543218Open DOISearch in Google Scholar

37. Fazeli MS, Dashti H, Akbarzadeh S, Assadi M, Aminian A, Keramati MR, Nabipour I. Circulating levels of novel adipocytokines in patients with colorectal cancer. Cytokine. 2013;62(1):81-5; DOI:10.1016/j. cyto.2013.02.012.10.1016/j.cyto.2013.02.01223474107Open DOISearch in Google Scholar

38. Nakajima TE, Yamada Y, Hamano T, Furuta K, Gotoda T, Katai H, Kato K, Hamaguchi T, Shimada Y. Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol. 2009;44(7):685-90; DOI:10.1007/s00535-009-0063-5.10.1007/s00535-009-0063-519430715Open DOISearch in Google Scholar

39. Yu-Duan T, Chao-Ping W, Chih-Yu C, Li-Wen L, Tsun-Mei L, Chia-Chang H, Fu-Mei C, Hsien-Chang L, Hsia-Fen H, Yau-Jiunn L, Jer-Yiing H. Elevated plasma level of visfatin/pre-b cell colony-enhancing factor in male oral squamous cell carcinoma patients. Med Oral Patol Oral Cir Bucal. 2013;18(2):e180-6.10.4317/medoral.18574361386723229270Search in Google Scholar

40. Talavera-Urquijo E, Rodriguez-Navarro S, Beisani M, Salcedo-Allende MT, Chakkur A, Arus-Aviles M, Cremades M, Augustin S, Martell M, Balibrea JM. Morphofunctional Changes After Sleeve Gastrectomy and Very Low Calorie Diet in an Animal Model of Non-Alcoholic Fatty Liver Disease Obes Surg. 2018;28(1):142-151; DOI:10.1007/s11695-017-2805-4.10.1007/s11695-017-2805-428710554Open DOISearch in Google Scholar

41. Reddy PS, Umesh S, Thota B, Tandon A, Pandey P, Hegde AS, Balasubramaniam A, Chandramouli BA, Santosh V, Rao MR, Kondaiah P, Somasundaram K. PBEF1/NAmPRTase/Visfatin: a potential malignant astrocytoma/gliobastoma serum marker with prognostic value. Cancer Biol Ther. 2008;7(5):663-8.10.4161/cbt.7.5.566318728403Search in Google Scholar

42. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, Mastracci L, Boero S, Montecucco F, Sociali G, Lasiglie D, Damonte P, Grozio A, Mannino E, Poggi A, D’Agostino VG, Monacelli F, Provenzani A, Odetti P, Ballestrero A, Bruzzone S, Nencioni A. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289(49):34189-204; DOI:10.1074/jbc.M114.594721.10.1074/jbc.M114.594721425635125331943Search in Google Scholar

43. Tian W, Zhu Y, Wang Y, Teng F, Zhang H, Liu G, Ma X, Sun D, Rohan T, Xue F. Visfatin, a potential biomarker and prognostic factor for endometrial cancer. Gynecol Oncol. 2013;129(3):505-12; DOI:10.1016/j. ygyno.2013.02.022.10.1016/j.ygyno.2013.02.02223438672Open DOISearch in Google Scholar

44. Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 2003;63(21):7436-42.Search in Google Scholar

45. Montecucco F, Cea M, Bauer I, Soncini D, Caffa I, Lasiglie D, Nahimana A, Uccelli A, Bruzzone S, Nencioni A. Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors as therapeutics: rationales, controversies, clinical experience. Curr Drug Targets. 2013;14(6):637-43.10.2174/138945011131406000323531116Open DOISearch in Google Scholar

46. Ramachandran J, Suyama AT. Inhibition of replication of normal adrenocortical cells in culture by adrenocorticotropin. Proc Natl Acad Sci U S A. 1975;72(1):113-7.10.1073/pnas.72.1.113432251164010Search in Google Scholar

47. Rybak SM, Ramachandran J. Primary culture of normal rat adrenocortical cells. I. Culture conditions for optimal growth and function. In Vitro.1981;17(7):599-604.10.1007/BF02618458Search in Google Scholar

48. Parmar J, Key RE, Rainey WE. Development of an adrenocorticotropin- responsive human adrenocortical carcinoma cell line. J Clin Endocrinol Metab. 2008;93(11):4542-6; DOI:10.1210/jc.2008-0903.10.1210/jc.2008-0903258257218713819Open DOISearch in Google Scholar

49. Rainey WE, Saner K, Schimmer BP. Adrenocortical cell lines. Mol Cell Endocrinol. 2004;228(1-2):23-38; DOI:10.1016/j.mce.2003.12.020.10.1016/j.mce.2003.12.02015541570Open DOISearch in Google Scholar

50. Cea M, Cagnetta A, Fulciniti M, Tai YT, Hideshima T, Chauhan D, Roccaro A, Sacco A, Calimeri T, Cottini F, Jakubikova J, Kong SY, Patrone F, Nencioni A, Gobbi M, Richardson P, Munshi N, Anderson KC. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood. 2012;120(17):3519-29; DOI:10.1182/blood-2012-03-416776.10.1182/blood-2012-03-416776348286222955917Open DOISearch in Google Scholar

eISSN:
2544-3577
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biochemistry