1. bookVolume 4 (2021): Edizione 2 (December 2021)
Dettagli della rivista
Prima pubblicazione
30 Sep 2019
Frequenza di pubblicazione
2 volte all'anno
Accesso libero

Hormones Can Influence Antibiotic Susceptibilities Even in Mono- and Co-Culture Conditions

Pubblicato online: 30 Dec 2021
Volume & Edizione: Volume 4 (2021) - Edizione 2 (December 2021)
Pagine: 39 - 49
Ricevuto: 12 Nov 2021
Accettato: 10 Dec 2021
Dettagli della rivista
Prima pubblicazione
30 Sep 2019
Frequenza di pubblicazione
2 volte all'anno

1. Alves CT, Silva S, Pereira L, Williams DW, Azeredo J, Henriques M (2014) Effect of progesterone on Candida albicans vaginal pathogenicity. Inter J Med Microbiol 304:1011–1017.10.1016/j.ijmm.2014.07.004Search in Google Scholar

2. Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ, Maddocks SE (2018) Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathog Dis 76:1–10.10.1093/femspd/fty003Search in Google Scholar

3. Ambrose PG, VanScoy BD, Adams J, Fikes S, Bader JC, Bhavnani SM, Rubino CM (2018) Norepinephrine in combination with antibiotic therapy increases both the bacterial replication rate and bactericidal activity. Antimicrob Agents Chemother 62(4): e02257-17.10.1128/AAC.02257-17Search in Google Scholar

4. Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A (2007) Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun 75:4597–4607.10.1128/IAI.00630-07Search in Google Scholar

5. Bearson BL (2016) Molecular profiling: Catecholamine modulation of gene expression in escherichia coli o157:H7 and salmonella enterica serovar typhimurium. Adv Experiment Med Biol 874:167–182.10.1007/978-3-319-20215-0_7Search in Google Scholar

6. Beaudoin T, Yau YCW, Stapleton PJ, Gong Y, Wang PW, Guttman DS, Waters V (2017) Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. npj Biofilms Microbiomes 3:1–8.10.1038/s41522-017-0035-0Search in Google Scholar

7. Belay T, Aviles H, Vance M, Fountain K, Sonnenfeld G (2003) Catecholamines and in vitro growth of pathogenic bacteria: Enhancement of growth varies greatly among bacterial species. Life Sci 73:1527–1535.10.1016/S0024-3205(03)00472-7Search in Google Scholar

8. Bishayi B, Adhikary R, Nandi A, Sultana S (2016) Beneficial Effects of Exogenous Melatonin in Acute Staphylococcus aureus and Escherichia coli Infection-Induced Inflammation and Associated Behavioral Response in Mice After Exposure to Short Photoperiod. Inflammation 39:2072–2093.10.1007/s10753-016-0445-927682182Search in Google Scholar

9. Boukerb AM, Cambronel M, Rodrigues S, Mesguida O, Knowlton R, Feuilloley MGJ, Zommiti M, Connil N (2021) Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology. Frontiers in Microbiology 12:1–18.10.3389/fmicb.2021.690942852697234690943Search in Google Scholar

10. Boyanova L (2017) Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe 44:13–19.10.1016/j.anaerobe.2017.01.00328077337Search in Google Scholar

11. Briaud P, Bastien S, Camus L, Boyadjian M, Reix P, Mainguy C, Vandenesch F, Doléans-Jordheim A, Moreau K (2020a) P131 Most of Staphylococcus aureus and Pseudomonas aeruginosa coinfecting isolates coexist, a condition that may impact clinical outcomes in cystic fibrosis patients. Front Cell Infect Microbiol 3:10:266. doi: 10.3389/fcimb.2020.00266.10.3389/fcimb.2020.00266728562632582568Search in Google Scholar

12. Briaud P, Bastien S, Camus L, Boyadjian M, Reix P, Mainguy C, Vandenesch F, Doléans-Jordheim A, Moreau K (2020b) Impact of Coexistence Phenotype Between Staphylococcus aureus and Pseudomonas aeruginosa Isolates on Clinical Outcomes Among Cystic Fibrosis Patients. Front in Cell Infect Microbiol 10:1–10.10.3389/fcimb.2020.00266Search in Google Scholar

13. Briaud P, Camus L, Bastien S, Doléans-Jordheim A, Vandenesch F, Moreau K (2019) Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep 9:1–14.10.1038/s41598-019-52975-z685112031719577Search in Google Scholar

14. Camus L, Briaud P, Vandenesch F, Moreau K (2021) How Bacterial Adaptation to Cystic Fibrosis Environment Shapes Interactions Between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 12:1–16.10.3389/fmicb.2021.617784796651133746915Search in Google Scholar

15. Chen X, Sun C, Laborda P, He Y, Zhao Y, Li C, Liu F (2019) Melatonin treatments reduce the pathogenicity and inhibit the growth of Xanthomonas oryzae pv. oryzicola. Plant Pathol 68:288–296.10.1111/ppa.12954Search in Google Scholar

16. CLSI, Clinical and Laboratory Standards Institute, M07– A10: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, Vol. 35, CLSI, Wayne, PA, USA, 31th edition, 2021Search in Google Scholar

17. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP (2011) An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 2011;6(11):e27317. doi: 10.1371/journal.pone.0027317.10.1371/journal.pone.0027317320862522076151Search in Google Scholar

18. Dehbashi S, Alikhani MY, Tahmasebi H, Arabestani MR (2021) The inhibitory effects of Staphylococcus aureus on the antibiotic susceptibility and virulence factors of Pseudomonas aeruginosa: A549 cell line model. AMB Express 30;11(1):50. doi: 10.1186/s13568-021-01210-y.10.1186/s13568-021-01210-y801006633786713Search in Google Scholar

19. DeLeon S, Clinton A, Fowler H, Everett J, Horswill AR, Rumbaugh KP (2014) Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an In vitro wound model. Infect Immun 82:4718–4728.10.1128/IAI.02198-14424932725156721Search in Google Scholar

20. Engelsöy U, Svensson MA, Demirel I (2021) Estradiol Alters the Virulence Traits of Uropathogenic Escherichia coli. Front Microbiol 20;12:682626. doi: 10.3389/fmicb.2021.682626.10.3389/fmicb.2021.682626832924534354683Search in Google Scholar

21. Freestone PP, Hirst RA, Sandrini SM, Sharaff F, Fry H, Hyman S, O’Callaghan C (2012) Pseudomonas aeruginosa-catecholamine inotrope interactions: A contributory factor in the development of ventilator-associated pneumonia? Chest 142:1200–1210.10.1378/chest.11-261422556319Search in Google Scholar

22. Freestone PPE, Al-Dayan N, Lyte M (2016) Staphylococci, catecholamine inotropes and hospital-acquired infections. Adv Exp Med Biol 874:183–199.10.1007/978-3-319-20215-0_826589219Search in Google Scholar

23. Freestone PPE, Haigh RD, Lyte M (2007) Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. FEMS Microbiol Lett 269:221–228.10.1111/j.1574-6968.2006.00619.x17229058Search in Google Scholar

24. Fteita D, Könönen E, Söderling E, Gürsoy UK (2014) Effect of estradiol on planktonic growth, coaggregation, and biofilm formation of the Prevotella intermedia group bacteria. Anaerobe 27:7–13.10.1016/j.anaerobe.2014.02.00324594108Search in Google Scholar

25. Ganganna A, Rudariah CB, Rao R, Prakash VM (2021) Antibacterial activity of melatonin against prime periodontal pathogens: An in vitro study. J Intern Oral Health 13:164–168.Search in Google Scholar

26. Gonçalves B, Bernardo R, Wang C, Schröder MS, Pedro NA, Butler G, Azeredo J, Henriques M, Pereira Mira N, Silva S (2020) Effect of progesterone on Candida albicans biofilm formation under acidic conditions: A transcriptomic analysis. Intern J Med Microbiol 310:151414.10.1016/j.ijmm.2020.15141432173268Search in Google Scholar

27. Gümüş D, Kalaycı Yüksek F, Sefer Ö, Yörük E, Uz G, Anğ Küçüker M (2019) The roles of hormones in the modulation of growth and virulence genes’ expressions in UPEC strains. Microb Pathog 132:319–324.10.1016/j.micpath.2019.05.01931082530Search in Google Scholar

28. Gumus D, Yoruk E, Kalayci-Yuksek F, Uz G, Topal-Sarikaya A, Ang-Kucuker M (2017) The effects of insulin and glucose on different characteristics of a UPEC: Alterations in growth rate and expression levels of some virulence genes. Clin Lab 63:1589–1597.10.7754/Clin.Lab.2017.17031329035446Search in Google Scholar

29. He F, Wu X, Zhang Q, Li Y, Ye Y, Li P, Chen S, Peng Y, Hardeland R, Xia Y (2021) Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights. Front Immunol 12.10.3389/fimmu.2021.683879820139834135911Search in Google Scholar

30. Inaba M, Matsuda N, Banno H, Jin W, Wachino J ichi, Yamada K, Kimura K, Arakawa Y (2016) In vitro reduction of antibacterial activity of tigecycline against multidrug-resistant Acinetobacter baumannii with host stress hormone norepinephrine. Intern J Antimicrob Agents 48:680–689.10.1016/j.ijantimicag.2016.09.02227842757Search in Google Scholar

31. Kahl BC (2018) Staphylococcus aureus and Pseudomonas aeruginosa Respiratory Tract Coinfection - What Can We Learn from Animal Models? J Infect Dis 217:854–856.10.1093/infdis/jix62429216374Search in Google Scholar

32. Kilinçel Ö, Çalişkan E, Şahin I, Öztürk CE, Kiliç N, Öksüz Ş (2019) The effect of melatonin on antifungal susceptibility in planktonic and biofilm forms of Candida strains isolated from clinical samples. Med Mycol 57:45–51.10.1093/mmy/myx15729390164Search in Google Scholar

33. Kim S, Yoon Y, Choi KH (2015) Pseudomonas aeruginosa DesB promotes staphylococcus aureus growth inhibition in coculture by controlling the synthesis of HAQs. PLoS ONE 10:1–16.10.1371/journal.pone.0134624Search in Google Scholar

34. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 110:1059–1064.10.1073/pnas.1214550110Search in Google Scholar

35. Kornman KS, Loesche WJ (1982) Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect Immun 35:256–263.10.1128/iai.35.1.256-263.1982Search in Google Scholar

36. Lee SJ, Lee HJ, Jung YH, Kim JS, Choi SH, Han HJ (2018) Melatonin inhibits apoptotic cell death induced by Vibrio vulnificus VvhA via melatonin receptor 2 coupling with NCF-1 article. Cell Death Dis 19;9(2):48. doi: 10.1038/s41419-017-0083-7.10.1038/s41419-017-0083-7Search in Google Scholar

37. Lee YM, Park JP, Jung YH, Lee HJ, Kim JS, Choi GE, Han HJ, Lee SJ (2020) Melatonin restores Muc2 depletion induced by V. vulnificus VvpM via melatonin receptor 2 coupling with Gαq. J Biomed Sci 27:1–14.10.1186/s12929-019-0606-xSearch in Google Scholar

38. Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood J HA (2009) Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett 299(1):100-9. doi: 10.1111/j.1574-6968.2009.01739.x10.1111/j.1574-6968.2009.01739.xSearch in Google Scholar

39. Liu Y, Jia Y, Yang K, Tong Z, Shi J, Li R, Xiao X, Ren W, Hardeland R, Reiter RJ, Wang Z, Wang Z, Ren W, Liu Y (2020) Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Theranostics 10:10697–10711.10.7150/thno.45951Search in Google Scholar

40. Lucca V, Apellanis Borges K, Quedi Furian T, Borsoi A, Pippi Salle CT, de Souza Moraes HL, Pinheiro do Nascimento V (2020) Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry. Microb Pathog 138:103799.10.1016/j.micpath.2019.103799Search in Google Scholar

41. Lyte JM, Shrestha S, Wagle BR, Liyanage R, Martinez DA, Donoghue AM, Daniels KM, Lyte M (2021) Serotonin modulates Campylobacter jejuni physiology and in vitro interaction with the gut epithelium. Poultry Sci 100(3):100944. doi: 10.1016/j.psj.2020. in Google Scholar

42. Lyte M and Ernst S. (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212.10.1016/0024-3205(92)90273-RSearch in Google Scholar

43. Lyte Mark FPPE (2010) Microbial Endocrinology. Springer, New York10.1007/978-1-4419-5576-0Search in Google Scholar

44. Lyte, Mark, Cryan JF (eds) (2014) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease, Springer, New York10.1007/978-1-4939-0897-4Search in Google Scholar

45. Michelsen CF, Christensen AMJ, Bojer MS, Høiby N, Ingmer H, Jelsbak L (2014) Staphylococcus aureus alters growth activity, autolysis, and antibiotic tolerance in a human host-adapted Pseudomonas aeruginosa lineage. J Bacteriol 196:3903–3911.10.1128/JB.02006-14424881625182495Search in Google Scholar

46. Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M (2014) Mechanisms of synergy in polymicrobial infections. J Microbiol 52:188–199.10.1007/s12275-014-4067-3709098324585050Search in Google Scholar

47. Nguyen AT, Oglesby-Sherrouse AG (2016) Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections. Appl Microbiol Biotechnol 100:6141–6148.10.1007/s00253-016-7596-3491600027236810Search in Google Scholar

48. Orazi G, Jean-Pierre F OG (2020) Pseudomonas aeruginosa PA14 Enhances the Efficacy of Norfloxacin against Staphylococcus aureus Newman Biofilms Giulia. J Bacteriol 25;202(18):e00159-20. doi: 10.1128/JB.00159-20.10.1128/JB.00159-20792508132661077Search in Google Scholar

49. Orazi G, O’Toole GA (2017) Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio 8:1–17.10.1128/mBio.00873-17551625528720732Search in Google Scholar

50. Ping O, Mao S, Xuewen H, Kaiyu W, Zhongqiong Y, Hualin F, Yinglun L, Yi G, Gang S, Changliang H, Xiaoxia L, Weiming L, Lixia L, Yunfeng Z, Xu S, Lizi Y (2017) Sclareol protects Staphylococcus aureus-induced lung cell injury via inhibiting alpha-hemolysin expression. J Microbiol Biotechnol 27:19–25.10.4014/jmb.1606.0603927666983Search in Google Scholar

51. Plotkin BJ, Roose RJ, Erikson Q, Viselli SM (2003) Effect of Androgens and Glucocorticoids on Microbial Growth and Antimicrobial Susceptibility. Curr Microbiol 47:514–520.10.1007/s00284-003-4080-y14756537Search in Google Scholar

52. Plotkin BJ, Viselli SM (2000) Effect of insulin on microbial growth. Curr Microbiol 41:60–64.10.1007/s00284001009210919401Search in Google Scholar

53. Poole K (2005) Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:479–487.10.1128/AAC.49.2.479-487.200554727915673721Search in Google Scholar

54. Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA, Vitko NP, Gode CJ, Lachiewicz AM, Wolfgang MC, Conlon BP (2017) Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biology 15:1–25.10.1371/journal.pbio.2003981572081929176757Search in Google Scholar

55. Sandrini S, Alghofaili F, Freestone P, Yesilkaya H (2014) Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression. BMC Microbiol 14:1–12.10.1186/1471-2180-14-180410555724996423Search in Google Scholar

56. Sharaff F, Freestone P (2011) Microbial Endocrinology. Cent Euro J Biol 6:685–694.10.2478/s11535-011-0067-zSearch in Google Scholar

57. Tekbas OF, Ogur R, Korkmaz A, Kilic A, Reiter RJ (2008) Melatonin as an antibiotic: New insights into the actions of this ubiquitous molecule. J Pineal Res 44:222–226.10.1111/j.1600-079X.2007.00516.x18289175Search in Google Scholar

58. Tognon M, Köhler T, Gdaniec BG, Hao Y, Lam JS, Beaume M, Luscher A, Buckling A, Van Delden C (2017) Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J 11:2233–2243.10.1038/ismej.2017.83560736528548661Search in Google Scholar

59. Trizna EY, Yarullina MN, Baidamshina DR, Mironova A V., Akhatova FS, Rozhina E V., Fakhrullin RF, Khabibrakhmanova AM, Kurbangalieva AR, Bogachev MI, Kayumov AR (2020) Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus—Pseudomonas aeruginosa dual-species biofilm. Sci Rep 10:1–18.10.1038/s41598-020-71834-w748179632908166Search in Google Scholar

60. Truccollo B, Whyte P, Bolton DJ (2020) An investigation of the effect of catecholamines and glucocorticoids on the growth and pathogenicity of Campylobacter jejuni. Pathogens 9:1–15.10.3390/pathogens9070555740023732664224Search in Google Scholar

61. Vega NM, Allison KR, Samuels AN, Klempner MS, Collins JJ (2013) Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc Natl Acad Sci U S A. 110:14420–14425.10.1073/pnas.1308085110376163223946425Search in Google Scholar

62. Vidaillac C, Yong VFL, Aschtgen MS, Qu J, Yang S, Xu G, Seng ZJ, Brown AC, Ali MK, Jaggi TK, Sankaran J, Foo YH, Righetti F, Nedumaran AM, Aogáin M Mac, Roizman D, Richard JA, Rogers TR, Toyofuku M, Luo D, Loh E, Wohland T, Czarny B, Horvat JC, Hansbro PM, Yang L, Li L, Normark S, Normark BH, Chotirmall SH (2020) Sex steroids induce membrane stress responses and virulence properties in Pseudomonas aeruginosa. mBio 11:1–19.10.1128/mBio.01774-20752772332994320Search in Google Scholar

63. Wiid I, Hoal-Van Helden E, Hon D, Lombard C, Van Helden P (1999) Potentiation of isoniazid activity against Mycobacterium tuberculosis by melatonin. Antimicrob Agents Chemother 43:975–977.10.1128/AAC.43.4.9758924110103215Search in Google Scholar

64. Wijesinghe G, Dilhari A, Gayani B, Kottegoda N, Samaranayake L, Weerasekera M (2019) Influence of Laboratory Culture Media on in vitro Growth, Adhesion, and Biofilm Formation of Pseudomonas aeruginosa and Staphylococcus aureus. Med Prin Pract 28:28–35.10.1159/000494757655833430352435Search in Google Scholar

65. Xu F, Wu C, Guo F, Cui G, Zeng X, Yang B, Lin J (2015) Transcriptomic analysis of Campylobacter jejuni NCTC 11168 in response to epinephrine and norepinephrine. Front Microbiol 6:1–11.10.3389/fmicb.2015.00452443541826042101Search in Google Scholar

66. Yang L, Liu Y, Markussen T, Høiby N, Tolker-Nielsen T, Molin S (2011) Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 62:339–347.10.1111/j.1574-695X.2011.00820.x21595754Search in Google Scholar

67. Yang Q, Anh NDQ, Bossier P, Defoirdt T (2014) Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi. Front Microbiol 5:1–12.10.3389/fmicb.2014.00584422222725414697Search in Google Scholar

68. Yung DBY, Sircombe KJ, Pletzer D (2021) Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 116:1–15.10.1111/mmi.1469933576132Search in Google Scholar

69. Zhou W, Zhang X, Zhu CL, He ZY, Liang JP, Song ZC (2016) Melatonin receptor agonists as the “perioceutics” agents for periodontal disease through modulation of Porphyromonas gingivalis virulence and inflammatory response. PLoS ONE 10;11(11):e0166442. doi: 10.1371/journal.pone.0166442.10.1371/journal.pone.0166442510438127832188Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo