Accesso libero

Proof without words: Periodic continued fractions

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Introduction

Let x := x0 be a real number. Set a0 = [x], the greatest integer in x and 1x0a0 $\frac{1}{{{x}_{0}}-{{a}_{0}}}$its complete quotients.

Set ai = [xi], the greatest integer in xi and xi+1=1xiaforalli1. ${{x}_{i}}+1=\frac{1}{{{x}_{i}}-a}\text{for}\,\text{all}\,\,i\ge 1.$Then,

x=a0+1a1+1a2+1 $$x={{a}_{0}}+\frac{1}{{{a}_{1}}+\frac{1}{{{a}_{2}}+\frac{1}{\ldots }}}$$

The algorithm stops after finitely many steps if and only if x is rational. The above expansion is called The simple continued fraction of x. It is customarily written x = [a0,a1, . . . ,an,. ].

We call convergents of x the reduced fractions difined by:

p0q0=a0, $$\frac{{{p}_{0}}}{{{q}_{0}}}={{a}_{0}},$$ p1q1=a0+1a1,,pnqn=a0+1a1+1a2+1a3+1an,. $$\begin{align}& \frac{{{p}_{1}}}{{{q}_{1}}}={{a}_{0}}+\frac{1}{{{a}_{1}}}, \\ & \ldots \,\,\,, \\ & \frac{{{p}_{n}}}{{{q}_{n}}}={{a}_{0}}+\frac{1}{{{a}_{1}}+}\frac{1}{{{a}_{2}}+}\frac{1}{{{a}_{3}}+}\cdots \frac{1}{{{a}_{n}}},\cdots . \\ \end{align}$$

If there exists k ≥ 0 and m > 0 such that whenever r > k, we have ar = ar+m, the continued fraction is said periodic, with period (b1, . . . ,bm) = (ak+1, . . . ,ak+m) and pre-period (a0,a1, . . . ,ak), which can be written for simplicity x=[ a0,a1,ak,b1,bm¯ ]. $x=\left[ {{a}_{0}},{{a}_{1}},\cdots {{a}_{k}},\overline{{{b}_{1}}\,,\cdots {{b}_{m}}} \right].$These so-called periodic continued fractions are precisely those that represent quadratic irrationalities.

We find a closed form expression for x=[ a0,a1,ak,b1,bm¯ ] $x=\left[ {{a}_{0}},{{a}_{1}},\cdots {{a}_{k}},\overline{{{b}_{1}}\,,\cdots {{b}_{m}}} \right]$, which generalized a previous resut of Roger B. Nelsen.

Main result
Lemma 1

Let x > 0 such that x=a+bcx,thenx=12(a2+a2+4bc) $x=a+\frac{b}{cx},then\,x\,=\frac{1}{2}\left( {{a}^{2}}+\sqrt{{{a}^{2}}+4\frac{b}{c}} \right)$

Proof. Consider the Following figure:

We have 2 x a 2 = a 2 + 4 b c , then  x = 1 2 a 2 + a 2 + 4 b c . ${{\left( 2x-a \right)}^{2}}={{a}^{2}}+4\frac{b}{c},\,\text{then }x=\frac{1}{2}\left( {{a}^{2}}+\sqrt{{{a}^{2}}+4\frac{b}{c}} \right)\,\,.$

Lemma 2

I f x = a 0 , a 1 , , a n ¯ , t h e n x = p n q n 1 q n + p n 1 q n x . $If\,x=\left[ \overline{{{a}_{0}},{{a}_{1}},\cdots ,{{a}_{n}}} \right],\,then\,x=\frac{{{p}_{n}}-{{q}_{n}}-1}{{{q}_{n}}}+\frac{p_n-1}{{{q}_{n}}x}.$

Proof. We have x = a 0 , a 1 , , a n ¯ = a 0 , a 1 , a n , x = p n x p n 1 q n x q n 1 . Then , q n x 2 = p n q n 1 + p n 1 . which $\,x=\left[ \overline{{{a}_{0}},{{a}_{1}},\cdots ,{{a}_{n}}} \right]=\left[ {{a}_{0}},{{a}_{1}},\cdots {{a}_{n}},x \right]=\frac{{{p}_{n}}x-{{p}_{n-1}}}{{{q}_{n}}x-{{q}_{n-1}}}.\text{Then}\,\text{,}\,{{q}_{n}}{{x}^{2}}=\left( {{p}_{n}}-{{q}_{n-1}} \right)+{{p}_{n-1}}.\,\text{which}$

gives x=pnqn1qn+pn1qnx. $x=\frac{{{p}_{n}}-{{q}_{n-1}}}{{{q}_{n}}}+\frac{{{p}_{n-1}}}{{{q}_{n}}x}.$Completing the proof.

Theorem 3

The periodic continued fraction [ a0,a1,,an¯ ] $\left[ \overline{{{a}_{0}},{{a}_{1}},\cdots ,{{a}_{n}}} \right]$equals

1 2 p n q n 1 q n 2 + p n q n 1 q n 2 + 4 p n 1 q n . $$\frac{1}{2}\left[ {{\left( \frac{{{p}_{n}}-{{q}_{n-1}}}{{{q}_{n}}} \right)}^{2}}+\sqrt{{{\left( \frac{{{p}_{n}}-{{q}_{n-1}}}{{{q}_{n}}} \right)}^{2}}+4\frac{{{p}_{n-1}}}{{{q}_{n}}}} \right].$$

Corollary 4

(Theorem [1] ). . The periodic continued fraction [ a,b¯ ] $\left[ \overline{a,b} \right]$equals

12(a2+a2+4ab). $$\frac{1}{2}\left( {{a}^{2}}+\sqrt{{{a}^{2}}+4\frac{a}{b}} \right).$$

Corollary 5

The periodic continued fraction [ a,b,c¯ ] $\left[ \overline{a,b,c} \right]$equals

12a+c-bbc+12+a+c-bbc+12+4ab+1bc+1. $$\frac12\left[\left(a+\frac{c-b}{bc+1}\right)^2+\sqrt{\left(a+\frac{c-b}{bc+1}\right)^2+4\frac{ab+1}{bc+1}}\right].$$

Example 6

As examples, notice that [ 1¯]=[ 1,1,1¯ ]=12(1+5),[ a¯]=[ a,a¯ ]=[ a,a,a¯ ]=12(a2+a2+4), $\left[ {\bar{1}} \right]=\left[ \overline{1,1,1} \right]=\frac{1}{2}\left( 1+\sqrt{5} \right),\left[ {\bar{a}} \right]=\left[ \overline{a,a} \right]=\left[ \overline{a,a,a} \right]=\frac{1}{2}\left( {{a}^{2}}+\sqrt{{{a}^{2}}+4} \right),$ [ 3,1,2¯ ]=12(1009+1489). $\left[ \overline{3,1,2} \right]=\frac{1}{2}\left( \frac{100}{9}+\sqrt{\frac{148}{9}} \right).$

Corollary 7

Let x=[ a0,a1,,ak,b1,bm¯ ], $x=\left[ {{a}_{0}},{{a}_{1}},\ldots ,{{a}_{k}},\overline{{{b}_{1}},\cdots {{b}_{m}}} \right],$be a periodic continued fraction, with period (b1, . . . ,bm) and pre-period (a0,a1, . . . ,ak).

Note piqi=[ a0,a1,,ai ],forall0ikandpjqj=[ b1,bj ]forall0jm. $\frac{{{p}_{i}}}{{{q}_{i}}}=\left[ {{a}_{0}},{{a}_{1}},\cdots ,{{a}_{i}} \right],for\,all\,0\le i\le k\,and\,\frac{{{{{p}'}}_{j}}}{{{{{q}'}}_{j}}}=\left[ {{b}_{1}},\cdots {{b}_{j}} \right]for\,all\,0\,\le j\le m.$Then,

x=pk(12[ (pmqm1qm)2+(pmqm1qn)2+4pm1qm ])+pk1qk(12[ (pmqm1qm)2+(pmqm1qn)2+4pm1qm ])+qk1. $$x=\frac{{{p}_{k}}\left( \frac{1}{2}\left[ {{\left( \frac{{{{{p}'}}_{m}}-{{{{q}'}}_{m-1}}}{{{{{q}'}}_{m}}} \right)}^{2}}+\sqrt{{{\left( \frac{{{{{p}'}}_{m}}-{{{{q}'}}_{m-1}}}{{{{{q}}}_{n}}} \right)}^{2}}+4\frac{{{{{p}'}}_{m-1}}}{{{{{q}'}}_{m}}}} \right] \right)+{{p}_{k-1}}}{{{q}_{k}}\left( \frac{1}{2}\left[ {{\left( \frac{{{{{p}'}}_{m}}-{{{{q}'}}_{m-1}}}{{{{{q}'}}_{m}}} \right)}^{2}}+\sqrt{{{\left( \frac{{{{{p}'}}_{m}}-{{{{q}'}}_{m-1}}}{{{{{q}}}_{n}}} \right)}^{2}}+4\frac{{{{{p}'}}_{m-1}}}{{{{{q}'}}_{m}}}} \right] \right)+{{q}_{k-1}}}.$$

Example 8

As examples, notice that

[ 1,2,3,4,5,2,1,1,1,4¯ ]=2257+431577+30,[ 1,2,2,n,1,2n¯ ]=7n2+2n+35n2+2n+2,[ 1,2,2,1,4,n,n,2n¯ ]=57n2+2+1033n2+2+7. $$\begin{align}& \left[ 1,2,3,4,5,2,\overline{1,1,1,4} \right]=\frac{225\sqrt{7}+43}{157\sqrt{7}+30}, \\ & \left[ 1,2,2,n,\overline{1,2n} \right]=\frac{7\sqrt{{{n}^{2}}+2n}+3}{5\sqrt{{{n}^{2}}+2n+2}}, \\ & \left[ 1,2,2,1,4,n,\overline{n,2n} \right]=\frac{57\sqrt{{{n}^{2}}+2}+10}{33\sqrt{{{n}^{2}}+2+7}}. \\ \end{align}$$

Conclusions

We find a closed form expression for x = a 0 , a 1 , , a k , b 1 , , b m ¯ , $\text{for}x=\left[ {{a}_{0}},{{a}_{1}},\cdots ,{{a}_{k}},\overline{{{b}_{1}},\cdots ,{{b}_{m}}} \right],$which generalized a previous resut of Roger B. Nelsen.

eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics