Accesso libero

Impact of Plastic and Steel Fibre Reinforcement on the Strength of Steel Anchors

INFORMAZIONI SU QUESTO ARTICOLO

Cita

American Concrete Institute Committee (2001). Code requirements for nuclear safety related structures (ACI 349-01). Farmington Hills: American Concrete Institute.Search in Google Scholar

American Concrete Institute Committee (2008). Building code requirements for structural concrete and commentary (ACI 318-08). Farmington Hills: American Concrete Institute.Search in Google Scholar

Balaguru, N. & Shah, S. P. (1992). Fiber-reinforced cement composites. New York: McGraw-Hill.Search in Google Scholar

Bentur, A. & Mindess, S. (2006). Fibre reinforced cementitious composites. New York: Taylor & Francis.10.1201/9781482267747Search in Google Scholar

Brandt, A. M. (2009). Cement based composites: materials mechanical properties and performance. New York: Taylor & Francis.Search in Google Scholar

Dudek, D. & Kadela, M. (2016). Pull-out strength of resin anchors in non-cracked and cracked concrete and masonry substrates. Procedia Engineering, 161, 864–867.10.1016/j.proeng.2016.08.734Search in Google Scholar

Dudek, D. (2017). Influence of cyclic loading on pull-out strength of expansion anchors in cracked concrete (unpublished doctoral thesis). Instytut Techniki Budowlanej, Warszawa.Search in Google Scholar

Eligehausen, R. & Fuchs, W. (1992). Beton und Stahlbetonbau. Design of fastenings for use in concrete. Berlin: Ernst & Sohn.Search in Google Scholar

Eligehausen, R., Mallée, R. & Silva, J. F. (2006). Anchorage in concrete construction. Berlin: Ernst & Sohn.Search in Google Scholar

International Federation for Structural Concrete [fib] (2011). Design of anchorages in concrete: Guide to good practice. fib Bulletin 58. Lausanne: International Federation for Structural Concrete (Fédération internationale du béton).Search in Google Scholar

Fuchs, W., Eligehausen, R. & Breen, J. E. (1995). Concrete capacity design (CCD) approach for fastening to concrete. ACI Structural Journal, 92, 73–94.Search in Google Scholar

Hoehler, M. & Eligehausen, R. (2008). Behavior of anchors in cracked concrete under tension cycling at near-ultimate loads. ACI Structural Journal, 105, 71–91.Search in Google Scholar

Karmažínova, M., Melcher, J. & Štrba, M. (2009). Fastening of steel structural members to concrete using post-installed mechanical fasteners. In D. Lam (Ed.) ASCCS 2009: 9th International Conference on Steel Concrete Composite and Hybrid Structures. 8-10 July 2009 University of Leeds, Leeds, UK: proceedings. Singapore: Research Publishing Services [CD].Search in Google Scholar

Kim, S., Yu, C. & Yoon, Y. (2014). Sleeve type expansion anchor behavior in cracked and non-cracked concrete. Nuclear Engineering and Design, 1–3, 273–281.Search in Google Scholar

Maidl, B. R. (1995). Steel fibre reinforced concrete. Berlin: Erns & Sohn.Search in Google Scholar

Nilforoush, R., Nilsson, M., Elfgren, L., Ožbolt, J., Hof-mann, J. & Eligehausen, R. (2016a). Tensile capacity of anchor bolts in non-cracked concrete: influence of member thickness and anchor’s head size. ACI Structural Journal, 114, 1519–1530.10.14359/51689503Search in Google Scholar

Nilforoush, R., Nilsson, M., Elfgren, L., Ožbolt, J., Hof-mann, J. & Eligehausen, R. (2016b). Influence of surface reinforcement, member thickness and cracked concrete on tensile capacity of anchor bolts. ACI Structural Journal, 114, 1543–1556.10.14359/51689505Search in Google Scholar

Pregartner, T. (2009). Einführung mit Beispielen. Bemes-sung von Befestigungen in Beton. Berlin: Ernst & Sohn.Search in Google Scholar

eISSN:
2544-1760
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Architecture and Design, Architecture, Architects, Buildings, Cities, Regions, Landscape Architecture, Construction, Materials