Accesso libero

Mycosynthesis of Size-Controlled Silver Nanoparticles through Optimization of Process Variables by Response Surface Methodology

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Asghar A, Abdul Raman AA, Daud WMAW. A comparison of central composite design and Taguchi method for optimizing Fenton process. Sci World J. 2014;2014:1–14. doi:10.1155/2014/869120 MedlineAsgharAAbdul RamanAADaudWMAW.A comparison of central composite design and Taguchi method for optimizing Fenton processSci World J.20142014114. doi:10.1155/2014/869120Medline416745025258741Open DOISearch in Google Scholar

Banerjee K, Ravishankar Rai V. A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles. Bionanoscience. 2018;8(1):17–31. doi:10.1007/s12668-017-0437-8BanerjeeKRavishankar RaiV.A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticlesBionanoscience.20188(1):1731. doi:10.1007/s12668-017-0437-8Open DOISearch in Google Scholar

Bordley JA, El-Sayed MA. Enhanced electrocatalytic activity toward the oxygen reduction reaction through alloy formation: Platinumsilver alloy nanocages. J Phys Chem C. 2016;120(27):14643–14651. doi:10.1021/acs.jpcc.6b03032BordleyJAEl-SayedMA.Enhanced electrocatalytic activity toward the oxygen reduction reaction through alloy formation: Platinumsilver alloy nanocagesJ Phys Chem C.2016120(27):1464314651. doi:10.1021/acs.jpcc.6b03032Open DOISearch in Google Scholar

Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng. 2017;2(1):18. doi:10.1007/s41204-017-0029-4DasRKPachapurVLLonappanLNaghdiMPulicharlaRMaitiSCledonMDalilaLMASarmaSJBrarSK.Biological synthesis of metallic nanoparticles: plants, animals and microbial aspectsNanotechnol Environ Eng.20172(1):18. doi:10.1007/s41204-017-0029-4Open DOISearch in Google Scholar

Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N. Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol. 2013;51(7):543–547. MedlineDeviTPKulanthaivelSKamilDBorahJLPrabhakaranNSrinivasaN.Biosynthesis of silver nanoparticles from Trichoderma speciesIndian J Exp Biol.201351(7):543547MedlineSearch in Google Scholar

Dil EA, Ghaedi M, Ghaedi A, Asfaram A, Jamshidi M, Purkait MK. Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study. J Taiwan Inst Chem Eng. 2016;59(59):210–220. doi:10.1016/j.jtice.2015.07.023DilEAGhaediMGhaediAAsfaramAJamshidiMPurkaitMK.Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium studyJ Taiwan Inst Chem Eng.201659(59):210220. doi:10.1016/j.jtice.2015.07.023Open DOISearch in Google Scholar

Ghanbari S, Vaghari H, Sayyar Z, Adibpour M, Jafarizadeh-Malmiri H. Autoclave-assisted green synthesis of silver nanoparticles using A. fumigatus mycelia extract and the evaluation of their physico-chemical properties and antibacterial activity. Green Processing and Synthesis. 2018;7(3):217–224. doi:10.1515/gps-2017-0062GhanbariSVaghariHSayyarZAdibpourMJafarizadeh-MalmiriH.Autoclave-assisted green synthesis of silver nanoparticles using A. fumigatus mycelia extract and the evaluation of their physico-chemical properties and antibacterial activityGreen Processing and Synthesis.20187(3):217224. doi:10.1515/gps-2017-0062Open DOISearch in Google Scholar

Gudikandula K, Vadapally P, Singara Charya MA. Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. OpenNano. 2017;2(1):64–78. doi:10.1016/j.onano.2017.07.002GudikandulaKVadapallyPSingara CharyaMA.Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studiesOpenNano.20172(1):6478. doi:10.1016/j.onano.2017.07.002Open DOISearch in Google Scholar

Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomed Biotechnol. 2017;45(8):1588–1596. doi:10.1080/21691401.2016.1267011 MedlineHamediSGhaseminezhadMShokrollahzadehSShojaosadatiSA.Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluationArtif Cells Nanomed Biotechnol.201745(8):15881596. doi:10.1080/21691401.2016.1267011Medline27966375Open DOISearch in Google Scholar

Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najaf Abadi S. Controlled biosynthesis of silver nanoparticles using culture supernatant of filamentous fungus. Iran J Chem Chem Eng. 2017;36(5):33–42.HamediSShojaosadatiSAShokrollahzadehSHashemi-Najaf AbadiS.Controlled biosynthesis of silver nanoparticles using culture supernatant of filamentous fungusIran J Chem Chem Eng.201736(5):3342Search in Google Scholar

Harrigan W. Laboratory methods in food microbiology. San Diego (USA): Academic Press. 1998;100 p.HarriganW.Laboratory methods in food microbiologySan Diego (USA)Academic Press1998100 p.Search in Google Scholar

Jogee PS, Ingle AP, Rai M. Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control. 2017;71:143–151. doi:10.1016/j.foodcont.2016.06.036JogeePSIngleAPRaiM.Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against themFood Control.201771143151. doi:10.1016/j.foodcont.2016.06.036Open DOISearch in Google Scholar

Khan AU, Malik N, Khan M, Cho MH, Khan MM. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng. 2018;41(1):1–20. doi:10.1007/s00449-017-1846-3 MedlineKhanAUMalikNKhanMChoMHKhanMM.Fungi-assisted silver nanoparticle synthesis and their applicationsBioprocess Biosyst Eng.201841(1):120. doi:10.1007/s00449-017-1846-3Medline28965140Open DOISearch in Google Scholar

Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115–1122. doi:10.1007/s00253-009-2159-5 MedlineLiWRXieXBShiQSZengHYOU-YangYSChenYB.Antibacterial activity and mechanism of silver nanoparticles on Escherichia coliAppl Microbiol Biotechnol.201085(4):11151122. doi:10.1007/s00253-009-2159-5MedlineOpen DOISearch in Google Scholar

Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin J Nat Med. 2016;14(8):615–620. doi:10.1016/S1875-5364(16)30072-3 MedlineMajeedSAbdullahMSDashGKAnsariMTNandaA.Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell lineChin J Nat Med.201614(8):615620. doi:10.1016/S1875-5364(16)30072-3MedlineOpen DOISearch in Google Scholar

Mitra C, Ghoshroy S, Lead J, Chanda A. Decreased aflatoxin biosynthesis upon uptake of 20 nm-sized citrate coated silver nanoparticles by the aflatoxin producer Aspergillus parasiticus. Microsc Microanal. 2016;22 S3:1182–1183. doi:10.1017/S1431927616006759MitraCGhoshroySLeadJChandaA.Decreased aflatoxin biosynthesis upon uptake of 20 nm-sized citrate coated silver nanoparticles by the aflatoxin producer Aspergillus parasiticusMicrosc Microanal.201622S311821183. doi:10.1017/S1431927616006759Open DOISearch in Google Scholar

Mitrano DM, Lombi E, Dasilva YAR, Nowack B. Unraveling the complexity in the aging of nanoenhanced textiles: A comprehensive sequential study on the effects of sunlight and washing on silver nanoparticles. Environ Sci Technol. 2016;50(11):5790–5799. doi:10.1021/acs.est.6b01478 MedlineMitranoDMLombiEDasilvaYARNowackB.Unraveling the complexity in the aging of nanoenhanced textiles: A comprehensive sequential study on the effects of sunlight and washing on silver nanoparticlesEnviron Sci Technol.201650(11):57905799. doi:10.1021/acs.est.6b01478Medline27128769Open DOISearch in Google Scholar

Mohamed YM, Azzam AM, Amin BH, Safwat NA. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol. 2015;14(14):1234–1241. doi:10.5897/AJB2014.14286MohamedYMAzzamAMAminBHSafwatNA.Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activityAfr J Biotechnol.201514(14):12341241. doi:10.5897/AJB2014.14286Open DOISearch in Google Scholar

Othman AM, Elsayed MA, Elshafei AM, Hassan MM. Application of response surface methodology to optimize the extracellular fungal mediated nanosilver green synthesis. JGEB. 2017;15(2):497–504.OthmanAMElsayedMAElshafeiAMHassanMM.Application of response surface methodology to optimize the extracellular fungal mediated nanosilver green synthesisJGEB.201715(2):49750410.1016/j.jgeb.2017.08.003629663330647692Search in Google Scholar

Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114(114):41–45. doi:10.1016/j.micpath.2017.11.013 MedlinePugazhendhiAPrabakarDJacobJMKaruppusamyISarataleRG.Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteriaMicrob Pathog.2018114(114):4145. doi:10.1016/j.micpath.2017.11.013Medline29146498Open DOISearch in Google Scholar

Rathna GS, Elavarrsi A, Peninal S, Subramanian J, Mano G, Kalaiselvam M. Extracellular biosynthesis of silver nanoparticles by endophytic fungus Aspergillus terreus and its anti-dermatophytic activity. Int J Pharm Biol Arch. 2013;1(4):481–487.RathnaGSElavarrsiAPeninalSSubramanianJManoGKalaiselvamM.Extracellular biosynthesis of silver nanoparticles by endophytic fungus Aspergillus terreus and its anti-dermatophytic activityInt J Pharm Biol Arch.20131(4):481487Search in Google Scholar

Robertson JD, Rizzello L, Avila-Olias M, Gaitzsch J, Contini C, Magoń MS, Renshaw SA, Battaglia G. Purification of nanoparticles by size and shape. Sci Rep. 2016;6(1):27494. doi:10.1038/srep27494 MedlineRobertsonJDRizzelloLAvila-OliasMGaitzschJContiniCMagońMSRenshawSABattagliaG.Purification of nanoparticles by size and shapeSci Rep.20166(1):27494. doi:10.1038/srep27494Medline489771027271538Open DOISearch in Google Scholar

Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T. Synthesis of silver nanoparticles using microorganisms. Mater Sci Pol. 2008;26(2):419–424.SadowskiZMaliszewskaIHGrochowalskaBPolowczykIKozleckiT.Synthesis of silver nanoparticles using microorganismsMater Sci Pol.200826(2):419424Search in Google Scholar

Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthe sis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018a;117(117):68–72. doi:10.1016/j.micpath.2018.02.008 MedlineSaravananMArokiyarajSLakshmiTPugazhendhiA.Synthe sis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteriaMicrob Pathog.2018a117(117):6872. doi:10.1016/j.micpath.2018.02.008Medline29427709Open DOISearch in Google Scholar

Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog. 2018b;116(116):221–226. doi:10.1016/j.micpath.2018.01.038 MedlineSaravananMBarikSKMubarakAliDPrakashPPugazhendhiA.Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteriaMicrob Pathog.2018b116(116):221226. doi:10.1016/j.micpath.2018.01.038Medline29407231Open DOISearch in Google Scholar

Shahzad A, Iqtedar M. Aspergillus fumigatus isolate BTCC10 small subunit ribosomal RNA gene (KY486782) [Internet]. NCBI. 2017; [cited 2018 September 16]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/KY486782ShahzadAIqtedarM.Aspergillus fumigatus isolate BTCC10 small subunit ribosomal RNA gene (KY486782) [Internet]NCBI2017[cited 2018 September 16]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/KY486782Search in Google Scholar

Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VS, Arvindnarayan S, Kumar G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using biocomponents of microalgae: formation mechanism and applications. Enzyme Microb Technol. 2016;95(95):28–44. doi:10.1016/j.enzmictec.2016.10.015 MedlineShankarPDShobanaSKaruppusamyIPugazhendhiARamkumarVSArvindnarayanSKumarG.A review on the biosynthesis of metallic nanoparticles (gold and silver) using biocomponents of microalgae: formation mechanism and applicationsEnzyme Microb Technol.201695(95):2844. doi:10.1016/j.enzmictec.2016.10.015Medline27866624Open DOISearch in Google Scholar

Shanmuganathan R, MubarakAli D, Prabakar D, Muthukumar H, Thajuddin N, Kumar SS, Pugazhendhi A. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res Int. 2018;25(11):10362–10370. doi:10.1007/s11356-017-9367-9 MedlineShanmuganathanRMubarakAliDPrabakarDMuthukumarHThajuddinNKumarSSPugazhendhiA.An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approachEnviron Sci Pollut Res Int.201825(11):1036210370. doi:10.1007/s11356-017-9367-9Medline28600792Open DOISearch in Google Scholar

Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J. Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. 2014;2014:1–8. doi:10.1155/2014/408021 MedlineSinghDRathodVNinganagoudaSHiremathJSinghAKMathewJ.Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureusBioinorg Chem Appl.2014201418. doi:10.1155/2014/408021Medline393018024639625Open DOISearch in Google Scholar

Vijayan SR, Santhiyagu P, Ramasamy R, Arivalagan P, Kumar G, Ethiraj K, Ramaswamy BR. Seaweeds: A resource for marine bionanotechnology. Enzyme Microb Technol. 2016;95(95):45–57. doi:10.1016/j.enzmictec.2016.06.009 MedlineVijayanSRSanthiyaguPRamasamyRArivalaganPKumarGEthirajKRamaswamyBR.Seaweeds: A resource for marine bionanotechnologyEnzyme Microb Technol.201695(95):4557. doi:10.1016/j.enzmictec.2016.06.009Medline27866626Open DOISearch in Google Scholar

Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, et al. Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol. 2018;38(6):817–835. doi:10.1080/07388551.2017.1414141 MedlineZhaoXZhouLRiaz RajokaMSYanLJiangCShaoDZhuJShiJHuangQYangHFungal silver nanoparticles: synthesis, application and challengesCrit Rev Biotechnol.201838(6):817835. doi:10.1080/07388551.2017.1414141Medline29254388Open DOISearch in Google Scholar

Zomorodian K, Pourshahid S, Sadatsharifi A, Mehryar P, Pakshir K, Rahimi MJ, Arabi Monfared A. Biosynthesis and characterization of silver nanoparticles by Aspergillus species. BioMed Res Int. 2016;2016:1–6. doi:10.1155/2016/5435397 MedlineZomorodianKPourshahidSSadatsharifiAMehryarPPakshirKRahimiMJArabi MonfaredA.Biosynthesis and characterization of silver nanoparticles by Aspergillus speciesBioMed Res Int.2016201616. doi:10.1155/2016/5435397Medline501987927652264Open DOISearch in Google Scholar

eISSN:
2544-4646
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology