Accesso libero

Efficacy of Heterorhabdits indica LPP35 against Aedes aegypti in domiciliary oviposition sites

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Achee N. L. , Grieco J. P. , Vatandoost H. , Seixas G. , Pinto J. , Ching-NG L. , Martins A. J. , Juntarajumnong W. , Corbel V. , Gouagna C. , David J.-P. , Logan J. G. , Orsborne J. , Marois E. , Devine G. J. and Vontas J. 2019. Alternative strategies for mosquito-borne arbovirus control. PLoS Neglected Tropical Diseases 13(1), available at: https://doi.org/10.1371/journal.pntd.0006822. Search in Google Scholar

Anonymous . 2019. Dengue and severe dengue. World Health Organization, Geneva, available at: www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue. Search in Google Scholar

Benelli G. , Jeffries C. L. and Walker T. 2016. Biological control of mosquito vectors: past, present, and future. Insects 7:52, doi: 10.3390/insects7040052.519820027706105 Open DOISearch in Google Scholar

Bhatt S. , Gething P. W. , Brady O. J. , Messina J. P. , Farlow A. W. , Moyes C. L. , Drake J. M. , Brownstein J. S. , Hoen A. G. , Sankoh O. , Myers M. F. , George D. B. , Jaenisch T. , Wint G. R. W. , Simmons C. P. , Scott T. W. , Farrar J. J. and Hay S. I. 2013. The global distribution and burden of dengue. Nature. 49:5047, doi: 10.1038/nature12060.365199323563266 Open DOISearch in Google Scholar

Calzolari M. 2016. Mosquito-borne diseases in Europe: an emerging public threat. Reports in parasitology 5:112, available at: https://doi.org/10.2147/RIP.S56780. Search in Google Scholar

Cardoso D. O. , Gomes V. M. , Dolinski C. and Souza R. M. 2015. Potential of entomopathogenic nematodes as biocontrol agents of immature stages of Aedes aegypti Nematoda Vol. 2 available at: http://dx.doi.org/10.4322/nematoda.09015. 10.4322/nematoda.09015 Search in Google Scholar

Cardoso D. O. , Gomes V. M. , Dolinski C. , Souza R. M. and Idalino W. S. S. 2016. Efficacy of Heterorhabditis indica LPP35 against Aedes aegypti larvae in human-generated containers and bromeliads. Nematoda Vol. 3 available at: http://dx.doi.org/10.4322/nematoda.01715. 10.4322/nematoda.01715 Search in Google Scholar

Chaudhary M. Z. , Majeed M. , Tayyib M. , Javed N. , Farzand A. , Moosa A. , Shehzad M. and Mushtaq F. 2017. Antagonistic potential of Steinernema kraussei and Heterorhabditis bacteriophora against dengue fever mosquito Aedes aegypti . Journal of Entomology and Zoology Studies 5:8659. Search in Google Scholar

Daad R. H. 1971. Size limitations on the infectibility of mosquito larvae by nematodes during filter-feeding. Journal of Invertebrate Pathology 18:24671.10.1016/0022-2011(71)90152-25092842 Search in Google Scholar

Dilipkumar A. , Ramalingam K. R. , Chinnaperumal K. , Govindasamy B. , Paramasivam D. , Dhayalan A. and Pachiappan P. 2019. Isolation and growth inhibition potential of entomopathogenic nematodes against three public health important mosquito vectors. Experimental Parasitology 197:7684, available at: https://doi.org/10.1016/j.exppara.2018.11.001 30414843 Search in Google Scholar

Finney J. R. and Harding J. B. 1981. Some factors affecting the use of Neoaplectana sp. for mosquito control. Mosquito News 41:798800. Search in Google Scholar

Gaugler R. , Kaplan B. , Alvarado C. , Montoya J. and Ortega M. 1983. Assessment of Bacillus thuringiensis serotype 14 and Steinernema feltiae (Nematoda: Steinernematidae) for control of the Simulium vectors of onchocercasis in Mexico. Entomophaga 28:30915.10.1007/BF02372182 Search in Google Scholar

Hahn M. B. , Eisen R. J. , Eisen L. , Boegler K. A. , Moore C. G. , McAllister J. , Savage H. M. and Mutebi J.-P. 2016. Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). Journal of Medical Entomology 53:116975, available at: https://doi.org/10.1093/jme/tjw072 937985827282817 Search in Google Scholar

Horstick O. and Runge-Ranzinger S. 2018. Protection of the house against chagas disease, dengue, leishmaniasis, and lymphatic filariasis: a systematic review. The Lancet Infectious Diseases 18:e147e158, available at: http://dx.doi.org/10.1016/S1473-3099(17)30422-X 10.1016/S1473-3099(17)30422-X29074038 Search in Google Scholar

Huang Y.-J. S. , Higgs S. and Vanlandingham D. L. 2017. Biological control strategies for mosquito vectors of arboviruses. Insects 8:21, doi: 10.3390/insects8010021.537194928208639 Open DOISearch in Google Scholar

Molta N. B. and Hominick W. M. 1989. Dose- and time-response assessments of Heterorhabitis heliothidis and Steinernema feltiae (Nem.: Rhabitida) against Aedes aegpytii larvae. Entomophaga 34:48593. Search in Google Scholar

Moyes C. L. , Vontas J. , Martins A. J. , Ng L. C. , Koou S. Y. , Dusfour I. , Raghavendra K. , Pinto J. , Corbel V. , David J.-P. and Weetman D. 2017. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negleted Tropical Diseases 11(7), available at: https://doi.org/10.1371/journal.pntd.0005625. Search in Google Scholar

Poinar G. O. Jr and Kaul H. N. 1982. Parasitism of the mosquito Culex pipiens by the nematode Heterorhabditis bacteriophora . Journal of Invertebrate Pathology 39:3827.10.1016/0022-2011(82)90063-5 Search in Google Scholar

Powell J. R. and Tabachnick W. J. 2013. History of domestication and spread of Aedes aegypti – a review. Memórias do Instituto Oswaldo Cruz 108:1117, doi: 10.1590/0074-0276130395.410917524473798 Open DOISearch in Google Scholar

Ribeiro J. I. Jr 2001. Análises estatísticas no SAEG (Sistema para análises estatísticas Universidade Federal de Viçosa, Viçosa. Search in Google Scholar

Robaina R. R. , Souza R. M. , Gomes V. M. , Cardoso D. O. and Almeida A. M. 2015. Nematode trophic structure in phytotelmata of Canistropsis billbergioides and Nidularium procerum (Bromeliaceae) in the Atlantic Forest – variability in relation to climate variables and plant architecture. Nematoda Vol. 2 available at: http://dx.doi.org/10.4322/nematoda.01615. 10.4322/nematoda.01615 Search in Google Scholar

Roiz D. , Wilson A. L. , Scott T. W. , Fonseca D. M. , Jourdain F. , Müller P. , Velayudhan R. and Corbel V. 2018. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Neglected Tropical Diseases 12(12), available at: https://doi.org/10.1371/journal.pntd.0006845. Search in Google Scholar

Shapiro-Ilan D. and Dolinski C. 2015. Entomopathogenic nematode application technology. Pp. 231254 in Rachel Campos-Herrera (Ed). Nematode Pathogenesis of Insects and Other Pests. Heidelberg, Springer International Publishing.10.1007/978-3-319-18266-7_9 Search in Google Scholar

Toksoz S. and Saruhan I. 2018. Efficacy of entomopathogenic nematode isolates from Turkey and Kyrgyzstan against the larvae of the mosquito species Culex pipiens L. (Diptera: Culicidae) under laboratory conditions. Egyptian Journal of Biological Pest Control 28:84 available at: https://doi.org/10.1186/s41938-018-0088-2. Search in Google Scholar

Ulvedal C. , Bertolotti M. A. , Cagnolo S. R. and Almirón W. A. 2017. Ensayos de sensibilidad de larvas de Aedes aegypti y Culex quinquefasciatus frente al nematodo Heterorhabditis bacteriophora en condiciones de laboratório. Biomédica 37:6776, available at: https://doi.org/10.7705/biomedica.v34i2.3470. Search in Google Scholar

Zohdy N. M. , Shamseldean M. M. , Abd-El-Samie E. M. and Hamama H. M. 2013. Efficacy of the steinernematid and heterorhabditid nematodes for controlling the mosquito, Culex quinquefasciatus (Diptera: Culicidae). Journal of Mosquito Research 3:3344, doi: 105376/jmr.2013.03.0005. Search in Google Scholar

eISSN:
2640-396X
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other