Accesso libero

Utilizing augmented reality technology for teaching fundamentals of the human brain and EEG electrode placement

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Balian, S., McGovern, S. K., Abella, B. S., Blewer, A. L. and Leary, M. 2019. Feasibility of an augmented reality cardiopulmonary resuscitation training system for health care providers. Heliyon 5(8): e02205.BalianS.McGovernS. K.AbellaB. S.BlewerA. L. and LearyM.2019. Feasibility of an augmented reality cardiopulmonary resuscitation training system for health care providers. Heliyon5(8): e02205.10.1016/j.heliyon.2019.e02205Search in Google Scholar

Baysal, U. and Şengül, G. 2010. Single camera photogrammetry system for EEG electrode identification and localization. Annals of Biomedical Engineering 38: 1539–1547.BaysalU. and ŞengülG.2010. Single camera photogrammetry system for EEG electrode identification and localization. Annals of Biomedical Engineering38: 15391547.10.1007/s10439-010-9950-4Search in Google Scholar

Bioulac, S., Purper-Ouakil, D., Ros, T., Blasco-Fontecilla, H., Prats, M., Mayaud, L. and Brandeis, D. 2019. Personalized at-home neurofeedback compared with long-acting methylphenidate in an european non-inferiority randomized trial in children with ADHD. BMC Psychiatry 19(237): 1–13.BioulacS.Purper-OuakilD.RosT.Blasco-FontecillaH.PratsM.MayaudL. and BrandeisD.2019. Personalized at-home neurofeedback compared with long-acting methylphenidate in an european non-inferiority randomized trial in children with ADHD. BMC Psychiatry19(237): 113.10.1186/s12888-019-2218-0Search in Google Scholar

Bjorn, M., Ravyse, W. S., Villafruella, D. S., Luimula, M. and Leivo, S. 2018. Higher education learner experience with fuzzy feedback in a digital learning environment. 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 253–260.BjornM.RavyseW. S.VillafruellaD. S.LuimulaM. and LeivoS. 2018. Higher education learner experience with fuzzy feedback in a digital learning environment. 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 253260.Search in Google Scholar

Boonbrahm, S., Boonbrahm, P. and Kaewrat, C. 2020. The use of marker-based augmented reality in space measurement. Procedia Manufacturing 42: 337–343.BoonbrahmS.BoonbrahmP. and KaewratC.2020. The use of marker-based augmented reality in space measurement. Procedia Manufacturing42: 337343.10.1016/j.promfg.2020.02.081Search in Google Scholar

Chen, S., He, Y., Qiu, H., Yan, X. and Zhao, M. 2019. Spatial localization of EEG electrodes in a TOF + CCD camera system. Frontiers in Neuroinformatics 13(21): 1–11.ChenS.HeY.QiuH.YanX. and ZhaoM.2019. Spatial localization of EEG electrodes in a TOF + CCD camera system. Frontiers in Neuroinformatics13(21): 111.10.3389/fninf.2019.00021Search in Google Scholar

Cline, C. C., Coogan, C. and He, B. 2018. EEG electrode digitization with commercial virtual reality hardware. PLoS ONE 13(11): e0207516.ClineC. C.CooganC. and HeB.2018. EEG electrode digitization with commercial virtual reality hardware. PLoS ONE13(11): e0207516.10.1371/journal.pone.0207516Search in Google Scholar

Collura, T. F., Mm.Ed, J. G., Tarrant, J., Bailey, J. M. and Starr, F. 2010. EEG biofeedback case studies using live Z-score training and a Normative Database. Journal of Neurotherapy 14: 22–46.ColluraT. F.Mm.EdJ. G.TarrantJ.BaileyJ. M. and StarrF.2010. EEG biofeedback case studies using live Z-score training and a Normative Database. Journal of Neurotherapy14: 2246.10.1080/10874200903543963Search in Google Scholar

de Munck, J. D., Vijn, P. and Spekreijse, H. 1991. A practical method for determining electrode positions on the head. Electroencephalography and Clinical Neurophysiology 78(1): 85–87.de MunckJ. D.VijnP. and SpekreijseH.1991. A practical method for determining electrode positions on the head. Electroencephalography and Clinical Neurophysiology78(1): 8587.10.1016/0013-4694(91)90023-WSearch in Google Scholar

Frantz, T., Jansen, B., Duerinck, J. and Vandemeulebroucke, J. 2018. Augmenting Microsoft’s HoloLens with vuforia tracking for neuronavigation. Healthcare Technology Letters 5(5): 221–225.FrantzT.JansenB.DuerinckJ. and VandemeulebrouckeJ.2018. Augmenting Microsoft’s HoloLens with vuforia tracking for neuronavigation. Healthcare Technology Letters5(5): 221225.10.1049/htl.2018.5079622224330464854Search in Google Scholar

Hammond, D. 2011. What is neurofeedback: an update. Journal of Neurotherapy 15: 305–336.HammondD.2011. What is neurofeedback: an update. Journal of Neurotherapy15: 305336.10.1080/10874208.2011.623090Search in Google Scholar

Honkamaa, P., Siltanen, S., Jäppinen, J., Woodward, C. and Korkalo, O. 2007. Interactive outdoor mobile augmentation using markerless tracking and GPS. Virtual Reality International Conference (VRIC), pp. 285–288, Laval, France.HonkamaaP.SiltanenS.JäppinenJ.WoodwardC. and KorkaloO.2007. Interactive outdoor mobile augmentation using markerless tracking and GPS. Virtual Reality International Conference (VRIC), pp. 285288, Laval, France.Search in Google Scholar

Jeon, S., Chien, J., Song, C. and Hong, J. 2017. A preliminary study on precision image guidance for electrode placement in an EEG study. Brain Topography 31: 174–185.JeonS.ChienJ.SongC. and HongJ.2017. A preliminary study on precision image guidance for electrode placement in an EEG study. Brain Topography31: 174185.10.1007/s10548-017-0610-y29204789Search in Google Scholar

Klem, G. H., Lüders, H., Jasper, H. H. and Elger, C. E. 1999. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology 52: 3–6.KlemG. H.LüdersH.JasperH. H. and ElgerC. E.1999. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology52: 36.Search in Google Scholar

Markram, H. 2013. Seven challenges for neuroscience. Functional Neurology 28(3): 145–151.MarkramH.2013. Seven challenges for neuroscience. Functional Neurology28(3): 145151.Search in Google Scholar

Marzbani, H., Marateb, H. R. and Mansourian, M. 2016. Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience 7(2): 143–158.MarzbaniH.MaratebH. R. and MansourianM.2016. Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience7(2): 143158.Search in Google Scholar

Nguyen, V. T. and Dang, T. 2017. Setting up virtual reality and augmented reality learning environment in unity. IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 315–320.NguyenV. T. and DangT.2017. Setting up virtual reality and augmented reality learning environment in unity. IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 315320.Search in Google Scholar

Peng, F. and Zhai, J. 2017. A mobile augmented reality system for exhibition hall based on Vuforia. 2nd International Conference on Image Vision and Computing (ICIVC), pp. 1049–1052.PengF. and ZhaiJ.2017. A mobile augmented reality system for exhibition hall based on Vuforia. 2nd International Conference on Image Vision and Computing (ICIVC), pp. 10491052.Search in Google Scholar

Pérez-Elvira, R., Oltra-Cucarella, J. and Carrobles, J. A. 2021. Effects of quantitative electroencephalogram normalization using 4-channel live z-score training neurofeedback for children with learning disabilities: preliminary data. Behavioral Psychology-Psicologia Conductual 29: 191–206.Pérez-ElviraR.Oltra-CucarellaJ. and CarroblesJ. A.2021. Effects of quantitative electroencephalogram normalization using 4-channel live z-score training neurofeedback for children with learning disabilities: preliminary data. Behavioral Psychology-Psicologia Conductual29: 191206.10.51668/bp.8321110nSearch in Google Scholar

Rodríguez-Calvache, M., Calle, A., Valderrama, S., López, I. A. and López, J. D. 2018. Analysis of exact electrode positioning systems for multichannel-EEG. 5th Workshop on Engineering Applications, WEA, Medellín, Colombia.Rodríguez-CalvacheM.CalleA.ValderramaS.LópezI. A. and LópezJ. D.2018. Analysis of exact electrode positioning systems for multichannel-EEG. 5th Workshop on Engineering Applications, WEA, Medellín, Colombia.10.1007/978-3-030-00350-0_43Search in Google Scholar

Sadeghi-Niaraki, A. and Choi, S. M. 2020. A survey of marker-less tracking and registration techniques for health & environmental applications to augmented reality and ubiquitous geospatial information systems. Sensors 20(10): 2997.Sadeghi-NiarakiA. and ChoiS. M.2020. A survey of marker-less tracking and registration techniques for health & environmental applications to augmented reality and ubiquitous geospatial information systems. Sensors20(10): 2997.10.3390/s20102997728550732466283Search in Google Scholar

Schneider, M., Kunz, C., Pal’a, A., Wirtz, C. R., Mathis-Ullrich, F. and Hlaváč, M. 2021. Augmented reality-assisted ventriculostomy. Neurosurgical Focus 50(1): E16.SchneiderM.KunzC.Pal’aA.WirtzC. R.Mathis-UllrichF. and HlaváčM.2021. Augmented reality-assisted ventriculostomy. Neurosurgical Focus50(1): E16.10.3171/2020.10.FOCUS2077933386016Search in Google Scholar

Shields, S. M., Morse, C. E., Applebaugh, E. D., Muntz, T. L. and Nichols, D. F. 2016. Are electrode caps worth the investment? an evaluation of EEG methods in undergraduate neuroscience laboratory courses and research. Journal of Undergraduate Neuroscience Education: JUNE: a Publication of FUN, Faculty for Undergraduate Neuroscience 15(1): A29–A37.ShieldsS. M.MorseC. E.ApplebaughE. D.MuntzT. L. and NicholsD. F.2016. Are electrode caps worth the investment? an evaluation of EEG methods in undergraduate neuroscience laboratory courses and research. Journal of Undergraduate Neuroscience Education: JUNE: a Publication of FUN, Faculty for Undergraduate Neuroscience15(1): A29A37.Search in Google Scholar

Shirazi, S. Y. and Helen, H. J. 2019. More reliable EEG electrode digitizing methods can reduce source estimation uncertainty, but current methods already accurately identify brodmann areas. Frontiers in Neuroscience 13: 1159.ShiraziS. Y. and HelenH. J.2019. More reliable EEG electrode digitizing methods can reduce source estimation uncertainty, but current methods already accurately identify brodmann areas. Frontiers in Neuroscience13: 1159.10.3389/fnins.2019.01159685663131787866Search in Google Scholar

Song, C., Jeon, S., Lee, S., Ha, H. G., Kim, J. and Hong, J. 2018. Augmented reality-based electrode guidance system for reliable electroencephalography. Biomedical Engineering Online 17(1): 64.SongC.JeonS.LeeS.HaH. G.KimJ. and HongJ.2018. Augmented reality-based electrode guidance system for reliable electroencephalography. Biomedical Engineering Online17(1): 64.10.1186/s12938-018-0500-x596857229793498Search in Google Scholar

van Krevelen, D. W. F. and Poelman, R. 2010. A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality 9(2): 1–20.van KrevelenD. W. F. and PoelmanR.2010. A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality9(2): 120.10.20870/IJVR.2010.9.2.2767Search in Google Scholar

Xiao, C. and Lifeng, Z. 2014. Implementation of mobile augmented reality based on Vuforia and Rawajali. IEEE 5th International Conference on Software Engineering and Service Science, pp. 912–915.XiaoC. and LifengZ.2014. Implementation of mobile augmented reality based on Vuforia and Rawajali. IEEE 5th International Conference on Software Engineering and Service Science, pp. 912915.Search in Google Scholar

eISSN:
1178-5608
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Engineering, Introductions and Overviews, other