An efficient sentiment analysis using topic model based optimized recurrent neural network
e
22 giu 2021
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 22 giu 2021
Pagine: 1 - 12
Ricevuto: 21 feb 2021
DOI: https://doi.org/10.21307/ijssis-2021-011
Parole chiave
© 2021 Nikhlesh Pathik et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Dataset statistics_
Dataset domain | Total | +ve | ‒ve |
---|---|---|---|
Restaurant from Yelp | 1,000 | 500 | 500 |
Mobile from Amazon | 1,000 | 500 | 500 |
Movies from IMDB | 1,000 | 500 | 500 |
Comparison of proposed HCL-Bi-LSTM model_
Model | Single-layer Bi-LSTM ( | Two-layer Bi-LSTM | Two-layer HCT Bi-LSTM | |||
---|---|---|---|---|---|---|
Dataset | T | V | T | V | T | V |
Amazon | 0.83 | 0.51 | 0.91 | 0.70 | 0.95 | 0.76 |
Yelp | 0.84 | 0.70 | 0.85 | 0.72 | 0.86 | 0.75 |
IMDB | 0.71 | 0.81 | 0.90 | 0.81 | 0.95 | 0.82 |
Various model parameters_
Parameter | Value |
---|---|
Vocabulary size | 10,000 |
Bi-LSTM | 2 layer |
Dense | 1 |
Activation | Sigmoid |
Optimizer | Adam function |
Loss Function | Binary cross-entropy |
Input Length | 100 |
Learning rate | 0.002 |
Epoch | 10 |