INFORMAZIONI SU QUESTO ARTICOLO

Cita

Phillips M. Breath Tests in Medicine. Scientific American 1992;267(1):74-9.10.1038/scientificamerican0792-74 Search in Google Scholar

Pauling L, Robinson AB, Teranish R, Cary P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proceedings of the National Academy of Sciences of the United States of America 1971;68(10):2374-&.10.1073/pnas.68.10.2374 Search in Google Scholar

Gisbert JP. Breath test with C-13-urea for H. pylori infection diagnosis by means of mass spectrometry and infrared spectrophotometry. Salud I Ciencia 2006;15(1):461-3. Search in Google Scholar

Effros RM. Dilution of respiratory solutes in exhaled condensates - From the authors. American Journal of Respiratory and Critical Care Medicine 2003;167(5):802.10.1164/ajrccm.167.5.957 Search in Google Scholar

Kharitonov SA, Chung KF, Evans D, OConnor BJ, Barnes PJ. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. American Journal of Respiratory and Critical Care Medicine 1996;153(6):1773-80.10.1164/ajrccm.153.6.8665033 Search in Google Scholar

Phillips M, Greenberg J. Ion-Trap Detection of Volatile Organic-Compounds in Alveolar Breath. Clinical Chemistry 1992;38(1):60-5.10.1093/clinchem/38.1.60 Search in Google Scholar

Groves WA, Zellers ET. Investigation of organic vapor losses to condensed water vapor in Tedlar(R) bags used for exhaled-breath sampling. American Industrial Hygiene Association Journal 1996;57(3):257-63.10.1080/15428119691014981 Search in Google Scholar

Williams DE. Semiconducting oxides as gas-sensitive resistors. Sensors and Actuators B-Chemical 1999;57(1-3):1-16.10.1016/S0925-4005(99)00133-1 Search in Google Scholar

Di Francesco F, Fuoco R, Trivella MG, Ceccarini A. Breath analysis: trends in techniques and clinical applications. Microchemical Journal 2005;79(1-2):405-10.10.1016/j.microc.2004.10.008 Search in Google Scholar

Henderson MJ, Karger BA, Wrenshall GA. Acetone in the Breath - A Study of Acetone Exhalation in Diabetic and Nondiabetic Human Subjects. Diabetes 1952;1(3):188-&.10.2337/diab.1.3.18814936833 Search in Google Scholar

Teshima N. Determination of acetone in breath. Analytica Chimica Acta 2005;535(1-2):189-99.10.1016/j.aca.2004.12.018 Search in Google Scholar

Giardina M, Olesik SV. Application of low-temperature glassy carbon-coated macrofibers for solidphase microextraction analysis of simulated breath volatiles. Analytical Chemistry 2003;75(7):1604-14.10.1021/ac025984k12705592 Search in Google Scholar

Rock F, Barsan N, Weimar U. Electronic nose: Current status and future trends. Chemical Reviews 2008;108(2):705-25.10.1021/cr068121q18205411 Search in Google Scholar

Ghoos Y, Hiele M, Rutgeerts P, Vantrappen G. Porous-Layer Open-Tubular Gas-Chromatography in Combination with An Ion Trap Detector to Assess Volatile Metabolites in Human Breath. Biomedical and Environmental Mass Spectrometry 1989;18(8):613-6.10.1002/bms.12001808172804446 Search in Google Scholar

Daughtrey EH, Oliver KD, Adams JR, Kronmiller KG, Lonneman WA, McClenny WA. A comparison of sampling and analysis methods for low-ppbC levels of volatile organic compounds in ambient air. Journal of Environmental Monitoring 2001;3(1):166-74.10.1039/b007158g11253013 Search in Google Scholar

Mendis S, Sobotka PA, Euler DE. Pentane and Isoprene in Expired Air from Humans -Gas-Chromatographic Analysis of Single-Breath. Clinical Chemistry 1994;40(8):1485-8.10.1093/clinchem/40.8.1485 Search in Google Scholar

Cao W. - Current status of methods and techniques for breath analysis. /20;- 37(-1):-13.10.1080/10408340600976499 Search in Google Scholar

Dwivedi P, Wu P, Klopsch SJ, Puzon GJ, Xun L, Hill HH. Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 2008;4(1):63-80.10.1007/s11306-007-0093-z Search in Google Scholar

Hansel A, Mark TD. Proton transfer reaction mass spectrometry - Foreword. International Journal of Mass Spectrometry 2004;239(2-3):VII-VIII.10.1016/j.ijms.2004.10.014 Search in Google Scholar

Warneke C, De Gouw JA, Kuster WC, Goldan PD, Fall R. Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method. Environmental Science & Technology 2003;37(11):2494-501.10.1021/es026266i12831035 Search in Google Scholar

Phillips M. Method for the collection and assay of volatile organic compounds in breath. Analytical Biochemistry 1997;247(2):272-8.10.1006/abio.1997.20699177688 Search in Google Scholar

Solga SF, Risby TH. What is Normal Breath? Challenge and Opportunity. Ieee Sensors Journal 2010;10(1):7-9.10.1109/JSEN.2009.2035201 Search in Google Scholar

Davis CE, Frank M, Mizaikoff B, Oser H. The Future of Sensors and Instrumentation for Human Breath Analysis. Ieee Sensors Journal 2010;10(1):3-6.10.1109/JSEN.2009.2035675 Search in Google Scholar

Owen OE, Trapp VE, Skutches CL, Mozzoli MA, Hoeldtke RD, Boden G, et al. Acetone Metabolism During Diabetic-Ketoacidosis. Diabetes 1982;31(3):242-8.10.2337/diab.31.3.242 Search in Google Scholar

Wang L, Teleki A, Pratsinis SE, Gouma PI. Ferroelectric WO3 nanoparticles for acetone selective detection. Chemistry of Materials 2008;20(15):4794-6.10.1021/cm800761e Search in Google Scholar

Woodward PM, Sleight AW, Vogt T. Ferroelectric tungsten trioxide. Journal of Solid State Chemistry 1997;131(1):9-17.10.1006/jssc.1997.7268 Search in Google Scholar

Strobel R, Pratsinis SE. Flame aerosol synthesis of smart nanostructured materials. Journal of Materials Chemistry 2007;17(45):4743-56.10.1039/b711652g Search in Google Scholar

Madler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, et al. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sensors and Actuators B-Chemical 2006;114(1):283-95.10.1016/j.snb.2005.05.014 Search in Google Scholar

Deng CH, Zhang J, Yu XF, Zhang W, Zhang XM. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2004;810(2):269-75.10.1016/S1570-0232(04)00657-9 Search in Google Scholar

Righettoni M, Tricoli A, Pratsinis SE. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Analytical Chemistry 2010;82(9):3581-7.10.1021/ac902695n20380475 Search in Google Scholar

Akhtar MK, Pratsinis SE, Mastrangelo SVR. Dopants in Vapor-Phase Synthesis of Titania Powders. Journal of the American Ceramic Society 1992;75(12):3408-16.10.1111/j.1151-2916.1992.tb04442.x Search in Google Scholar

Tricoli A, Graf M, Pratsinis SE. Optimal doping for enhanced SnO2 sensitivity and thermal stability. Advanced Functional Materials 2008;18(13):1969-76.10.1002/adfm.200700784 Search in Google Scholar

Wang XS, Sakai G, Shimanoe K, Miura N, Yamazoe N. Spin-coated thin films of SiO2-WO3 composites for detection of sub-ppm NO2. Sensors and Actuators B-Chemical 1997;45(2):141-6.10.1016/S0925-4005(97)00286-4 Search in Google Scholar

Khadayate RS, Sali V, Patil PP. Acetone vapor sensing properties of screen printed WO3 thick films. Talanta 2007;72(3):1077-81.10.1016/j.talanta.2006.12.043 Search in Google Scholar

Sahay PP. Zinc oxide thin film gas sensor for detection of acetone. Journal of Materials Science 2005;40(16):4383-5.10.1007/s10853-005-0738-0 Search in Google Scholar

Ferrus L, Guenard H, Vardon G, Varene P. Respiratory Water-Loss. Respiration Physiology 1980;39(3):367-81.10.1016/0034-5687(80)90067-5 Search in Google Scholar

Tricoli A, Righettoni M, Pratsinis SE. Minimal cross-sensitivity to humidity during ethanol detection by SnO2-TiO2 solid solutions. Nanotechnology 2009;20(31).10.1088/0957-4484/20/31/31550219597246 Search in Google Scholar

Barsan N, Weimar U. Conduction model of metal oxide gas sensors. Journal of Electroceramics 2001;7(3):143-67.10.1023/A:1014405811371 Search in Google Scholar

Seiyama T, Kato A, Fujiishi K, Nagatani M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Analytical Chemistry 1962;34(11):1502-&.10.1021/ac60191a001 Search in Google Scholar

Comini E. Metal oxide nano-crystals for gas sensing. Analytica Chimica Acta 2006;568(1-2):28-40.10.1016/j.aca.2005.10.06917761243 Search in Google Scholar

Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science 2001;291(5510):1947-9.10.1126/science.105812011239151 Search in Google Scholar

Vlachos DS, Skafidas PD, Avaritsiotis JN. The Effect of Humidity on Tin-Oxide Thick-Film Gas Sensors in the Presence of Reducing and Combustible Gases. Sensors and Actuators B-Chemical 1995;25(1-3):491-4.10.1016/0925-4005(95)85105-4 Search in Google Scholar

Skafidas PD, Vlachos DS, Avaritsiotis JN. Modeling and Simulation of Tin Oxide-Based Thick-Film Gas Sensors Using Monte-Carlo Techniques. Sensors and Actuators B-Chemical 1994;19(1-3):724-8.10.1016/0925-4005(93)01222-P Search in Google Scholar

Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors - A comprehensive review. Critical Reviews in Solid State and Materials Sciences 2004;29(3-4):111-88.10.1080/10408430490888977 Search in Google Scholar

Zakrzewska K. Mixed oxides as gas sensors. Thin Solid Films 2001;391(2):229-38.10.1016/S0040-6090(01)00987-7 Search in Google Scholar

Russell Binions HDAASDDLDEWaIPP. Zeolite-Modified Discriminating Gas Sensors. Journal of The Electrochemical Society; 2009.10.1149/1.3065436 Search in Google Scholar

Russell Binions* AASDDLIPP, David E.Williams. Discrimination Effects in Zeolite Modified Metal Oxide Semiconductor Gas Sensors. IEEE SENSORS; 2009.10.1109/ICSENS.2009.5398566 Search in Google Scholar

McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integrative Cancer Therapies 2006;5(1):30-9.10.1177/153473540528509616484712 Search in Google Scholar

Johnson ATC, Khamis SM, Preti G, Kwak J, Gelperin A. DNA-Coated Nanosensors for Breath Analysis. Ieee Sensors Journal 2010;10(1):159-66.10.1109/JSEN.2009.2035670 Search in Google Scholar

White J, Truesdell K, Williams LB, AtKisson MS, Kauer JS. Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase. Plos Biology 2008;6(1):30-6.10.1371/journal.pbio.0060009221154918215112 Search in Google Scholar

Cui SX, Albrecht C, Kuhner F, Gaub HE. Weakly bound water molecules shorten single-stranded DNA. Journal of the American Chemical Society 2006;128(20):6636-9.10.1021/ja058229816704264 Search in Google Scholar

Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials 2003;2(5):338-42.10.1038/nmat877 Search in Google Scholar

Staii C, Johnson AT. DNA-decorated carbon nanotubes for chemical sensing. Nano Letters 2005;5(9):1774-8.10.1021/nl051261f Search in Google Scholar

Jemal A, Siegel R, Xu JQ, Ward E. Cancer Statistics, 2010. Ca-A Cancer Journal for Clinicians 2010;60(5):277-300.10.3322/caac.20073 Search in Google Scholar

Martin DR, Semelka RC. Health effects of ionising radiation from diagnostic CT (vol 367, pg 1712, 2006). Lancet 2006;368(9546):1494. Search in Google Scholar

Szulejko JE, McCulloch M, Jackson J, Mckee DL, Walker JC, Solouki T. Evidence for Cancer Biomarkers in Exhaled Breath. Ieee Sensors Journal 2010;10(1):185-210.10.1109/JSEN.2009.2035669 Search in Google Scholar

Oneill HJ, Gordon SM, Oneill MH, Gibbons RD, Szidon JP. A Computerized Classification Technique for Screening for the Presence of Breath Biomarkers in Lung-Cancer. Clinical Chemistry 1988;34(8):1613-8.10.1093/clinchem/34.8.1613 Search in Google Scholar

Kneepkens CMF, Lepage G, Roy CC. The Potential of the Hydrocarbon Breath Test As A Measure of Lipid-Peroxidation (Vol 17, Pg 127, 1994). Free Radical Biology and Medicine 1994;17(6):609.10.1016/0891-5849(94)90102-3 Search in Google Scholar

Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 1999;353(9168):1930-3.10.1016/S0140-6736(98)07552-7 Search in Google Scholar

Kress-Rogers EEd. Handbook of Biosensors and Electronic Noses. Boca Raton, FL, USA : CRC Press, 1996. Search in Google Scholar

Ballantine DSWRMMSJRAJZETFGCWH. Acoustic Wave Sensors.San Diego, California: Academic Press; 1997.10.1016/B978-012077460-9/50003-4 Search in Google Scholar

Brunink JAJ, DiNatale C, Bungaro F, Davide FAM, DAmico A, Paolesse R, et al. The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Analytica Chimica Acta 1996;325(1-2):53-64.10.1016/0003-2670(96)00017-7 Search in Google Scholar

Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosensors & Bioelectronics 2003;18(10):1209-18.10.1016/S0956-5663(03)00086-1 Search in Google Scholar

Machado RF, Laskowski D, Deffenderfer O, Burch T, Zheng S, Mazzone PJ, et al. Detection of lung cancer by sensor array analyses of exhaled breath. American Journal of Respiratory and Critical Care Medicine 2005;171(11):1286-91.10.1164/rccm.200409-1184OC Search in Google Scholar

Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions - A meta-analysis. Jama-Journal of the American Medical Association 2001;285(7):914-24.10.1001/jama.285.7.914 Search in Google Scholar

Phillips M. Can the electronic nose really sniff out lung cancer? American Journal of Respiratory and Critical Care Medicine 2005;172(8):1060.10.1164/ajrccm.172.8.958 Search in Google Scholar

Phillips M, Altorki N, Austin JHM, Cameron RB, Cataneo RN, Kloss R, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clinica Chimica Acta 2008;393(2):76-84.10.1016/j.cca.2008.02.021 Search in Google Scholar

Steeghs MML, Cristescu SM, Munnik P, Zanen P, Harren FJM. An off-line breath sampling and analysis method suitable for large screening studies. Physiological Measurement 2007;28(5):503-14.10.1088/0967-3334/28/5/005 Search in Google Scholar

Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C, Gastl GA, et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. International Journal of Mass Spectrometry 2007;265(1):49-59.10.1016/j.ijms.2007.05.012 Search in Google Scholar

Chen X, Xu FJ, Wang Y, Pan YF, Lu DJ, Wang P, et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007;110(4):835-44.10.1002/cncr.22844 Search in Google Scholar

Kalapos MP. On the mammalian acetone metabolism: from chemistry to clinical implications. Biochimica et Biophysica Acta-General Subjects 2003;1621(2):122-39.10.1016/S0304-4165(03)00051-5 Search in Google Scholar

Ma W, Liu XY, Pawliszyn J. Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration. Analytical and Bioanalytical Chemistry 2006;385(8):1398-408.10.1007/s00216-006-0595-y Search in Google Scholar

Tassopou CN, Barnett D, Fraser TR. Breath-Acetone and Blood-Sugar Measurements in Diabetes. Lancet 1969;1(7609):1282-&.10.1016/S0140-6736(69)92222-3 Search in Google Scholar

Guo DM, Zhang D, Li NM, Zhang L, Yang JH. Diabetes Identification and Classification by Means of a Breath Analysis System. Medical Biometrics, Proceedings 2010;6165:52-63.10.1007/978-3-642-13923-9_6 Search in Google Scholar

Batterman S, Metts T, Kalliokoski P. Diffusive uptake in passive and active adsorbent sampling using thermal desorption tubes. Journal of Environmental Monitoring 2002;4(6):870-8.10.1039/b204835c Search in Google Scholar

Spanel P, Rolfe P, Rajan B, Smith D. The selected ion flow tube (SIFT) - A novel technique for biological monitoring. Annals of Occupational Hygiene 1996;40(6):615-26.10.1016/S0003-4878(96)00028-2 Search in Google Scholar

Hryniuk A, Ross BM. Detection of acetone and isoprene in human breath using a combination of thermal desorption and selected ion flow tube mass spectrometry. International Journal of Mass Spectrometry 2009;285(1-2):26-30.10.1016/j.ijms.2009.02.027 Search in Google Scholar

A.Greenberg andA.Cheung. Primer on Kidney Diseases.Philadelphia PA: Saunders; 2005. Search in Google Scholar

Manolis A. The Diagnostic Potential of Breath Analysis. Clinical Chemistry 1983;29(1):5-15.10.1093/clinchem/29.1.5 Search in Google Scholar

Smith D, Spanel P. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath. International Reviews in Physical Chemistry 1996;15(1):231-71.10.1080/01442359609353183 Search in Google Scholar

Davies S, Spanel P, Smith D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney International 1997;52(1):223-8.10.1038/ki.1997.324 Search in Google Scholar

Lin YJ, Guo HR, Chang YH, Kao MT, Wang HH, Hong RI. Application of the electronic nose for uremia diagnosis. Sensors and Actuators B-Chemical 2001;76(1-3):177-80.10.1016/S0925-4005(01)00625-6 Search in Google Scholar

Guo DM, Zhang D, Li NM, Zhang L, Yang JH. A Novel Breath Analysis System Based on Electronic Olfaction. Ieee Transactions on Biomedical Engineering 2010;57(11):2753-63.10.1109/TBME.2010.205586420667805 Search in Google Scholar

G Peng MHYYBSBRA-BAKUTaHH. Detection of lung, breast, colorectal and prostate cases from exhaled breath using a single array of nanosensors. 103 ed. 2010. p. 542-51.10.1038/sj.bjc.6605810293979320648015 Search in Google Scholar

Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotechnology 2009;4(10):669-73.10.1038/nnano.2009.23519809459 Search in Google Scholar

Haick H. Chemical sensors based on molecularly modified metallic nanoparticles. Journal of Physics D-Applied Physics 2007;40(23):7173-86.10.1088/0022-3727/40/23/S01 Search in Google Scholar

eISSN:
1178-5608
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Engineering, Introductions and Overviews, other