Traveling Route Generation Algorithm Based On LDA and Collaborative Filtering
, e
14 ott 2019
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 14 ott 2019
Pagine: 47 - 62
DOI: https://doi.org/10.21307/ijanmc-2019-021
Parole chiave
© 2018 Peng Cui et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

ROUTE BASIC ATTRIBUTE TABLE
id | name | plan_id | type | hours | daysep | |
---|---|---|---|---|---|---|
City id | City name | Route id | Route type | Playing time | The flag of end of day | |
string | string | string | string | list | bool | |
‘263’ | ‘Osaka’ | ‘3799’ | ‘place’ | [4.0,8.0] | true |
INPUT AND OUTPUT OF TRAVEL CITY TOPIC MODEL BASED ON LDA
input: preprocessed and classified travel route text set (one route for one line) The number of topic K, hyperparameters α and β |
---|
output: |
THE EXPERIMENTAL RESULTS OF DIFFERENT VALUES OF HYPERPARAMETER A
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
4.72 | 4.16 | 4.02 | 3.38 | 3.21 | 3.16 | 3.82 | 4.12 | 4.68 | 5.16 | |
0.282 | 0.254 | 0.236 | 0.192 | 0.166 | 0.171 | 0.179 | 0.216 | 0.249 | 0.288 |
THE EXPERIMENTAL RESULTS OF DIFFERENT NUMBER OF ITERATIONS N
300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | |
6.15 | 5.86 | 4.02 | 3.98 | 3.82 | 3.64 | 3.12 | 3.31 | 3.41 | 3.53 | |
0.332 | 0.308 | 0.275 | 0.262 | 0.236 | 0.214 | 0.161 | 0.172 | 0.181 | 0.194 |
THE EXPERIMENTAL RESULTS OF DIFFERENT VALUES OF HYPERPARAMETER B
0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.50 | |
5.62 | 4.42 | 4.02 | 3.32 | 4.23 | 5.10 | 5.82 | 5.92 | 6.58 | 7.21 | |
0.282 | 0.254 | 0.236 | 0.172 | 0.198 | 0.216 | 0.232 | 0.299 | 0.328 | 0.356 |
THE OUTPUT RESULTS OF DIFFERENT ALGORITHM
total days of travel | 7 | |
cities that user wants to go | Osaka, Nagoya | |
No improved LDA recommended algorithm | [Naoshima: 2.5, Yamanashi: 1.8, Osaka: 56.4, Nagoya: 29.8] | |
No improved collaborative filtering recommendation algorithm | [Yakushima: 12.5, Naoshima: 8.6, Osaka: 42.8, Nagoya: 26.2] | |
LDA travel route recommendation algorithm based on KDE and classification | [Kyoto: 42.4, Nakafurano-cho: 3.9, Osaka: 15.5, Nagoya: 16.5] | |
collaborative filtering travel route recommendation algorithm based on KDE and classification | [Kyoto: 24.2, Tokyo: 20.3, Osaka: 15.5, Nagoya: 16.5] |
THE EXPERIMENTAL RESULTS OF DIFFERENT NUMBER OF TOPIC K
4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | |
5.62 | 4.42 | 4.02 | 3.32 | 3.26 | 5.10 | 5.82 | 5.92 | 6.58 | 7.21 | |
0.223 | 0.214 | 0.205 | 0.196 | 0.182 | 0.226 | 0.265 | 0.314 | 0.408 | 0.516 |