Accesso libero

Clinically Used And Potential Antimycotics In The Context Of Therapy Of Dermatomycoses

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Anaissie E.J., McGinnis M.R., Pfaller M.A.B.T.: Clinical Mycology. Elsevier, Edinburgh, 2009AnaissieE.J.McGinnisM.R.PfallerM.A.B.T.Clinical MycologyElsevierEdinburgh2009Search in Google Scholar

Arif T., Bhosale J.D., Kumar N., Mandal T.K., Bendre R.S., Lavekar G.S., Dabur R.: Natural products – antifungal agents derived from plants. J. Asian Nat. Prod. Res. 11, 621–638 (2009)ArifT.BhosaleJ.D.KumarN.MandalT.K.BendreR.S.LavekarG.S.DaburR.Natural products – antifungal agents derived from plantsJ. Asian Nat. Prod. Res.11621638200910.1080/10286020902942350Search in Google Scholar

Bakkali F., Averbeck S., Averbeck D., Idaomar M.: Biological effects of essential oils – A review. Food Chem. Toxicol. 46, 446–475 (2008)BakkaliF.AverbeckS.AverbeckD.IdaomarM.Biological effects of essential oils – A reviewFood Chem. Toxicol.46446475200810.1016/j.fct.2007.09.106Search in Google Scholar

Beule K. De, Gestel J. Van: Pharmacology of itraconazole. Drugs 61 Suppl 1, 27–37 (2001)BeuleK. DeGestelJ. VanPharmacology of itraconazoleDrugs61Suppl 12737200110.2165/00003495-200161001-00003Search in Google Scholar

Bialy Z., Jurzysta M., Mella M., Tava A.: Triterpene saponins from aerial parts of Medicago arabica L. J. Agric. Food Chem. 52, 1095–1099 (2004)BialyZ.JurzystaM.MellaM.TavaA.Triterpene saponins from aerial parts of Medicago arabica LJ. Agric. Food Chem.5210951099200410.1021/jf030446+Search in Google Scholar

Bitencourt T.A., Komoto T.T., Massaroto B.G., Miranda C.E.S., Beleboni R.O., Marins M., Fachin A.L.: Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement. Altern. Med. 13, 229 (2013)BitencourtT.A.KomotoT.T.MassarotoB.G.MirandaC.E.S.BeleboniR.O.MarinsM.FachinA.L.Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrumBMC Complement. Altern. Med.13229201310.1186/1472-6882-13-229Search in Google Scholar

Blank A.F., Costa A.G., Arrigoni-Blank M.D.F., Cavalcanti S.C.H., Alves P.B., Innecco R., Ehlert P.A.D., Sousa I.F. De: Influence of season, harvest time and drying on Java citronella (Cymbopogon winterianus Jowitt) volatile oil. Brazilian J. Pharmacogn. 17, 557–564 (2007)BlankA.F.CostaA.G.Arrigoni-BlankM.D.F.CavalcantiS.C.H.AlvesP.B.InneccoR.EhlertP.A.D.SousaI.F. DeInfluence of season, harvest time and drying on Java citronella (Cymbopogon winterianus Jowitt) volatile oilBrazilian J. Pharmacogn.17557564200710.1590/S0102-695X2007000400014Search in Google Scholar

Boeck P., Leal P.C., Yunes R.A., Filho V.C., Lopez S., Sortino M., Escalante A., Furlan R.L.E., Zacchino S.: Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Arch. Pharm. (Weinheim). 338, 87–95 (2005)BoeckP.LealP.C.YunesR.A.FilhoV.C.LopezS.SortinoM.EscalanteA.FurlanR.L.E.ZacchinoS.Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalconesArch. Pharm. (Weinheim).3388795200510.1002/ardp.200400929Search in Google Scholar

Borris R.P.: Natural products research: perspectives from a major pharmaceutical company. J. Ethnopharmacol. 51, 29–38 (1996)BorrisR.P.Natural products research: perspectives from a major pharmaceutical companyJ. Ethnopharmacol.512938199610.1016/0378-8741(95)01347-4Search in Google Scholar

Brown G.D., Denning D.W., Levitz S.M.: Tackling Human Fungal Infections. Science, 336, 647 (2012)BrownG.D.DenningD.W.LevitzS.M.Tackling Human Fungal InfectionsScience336647201210.1126/science.122223622582229Search in Google Scholar

Cafarchia C., Laurentis N. De, Milillo M.A., Losacco V., Puccini V.: Antifungal activity of essential oils from leaves and flowers of Inula viscosa (Asteraceae) by Apulian region. Parassitologia, 44, 153–156 (2002)CafarchiaC.LaurentisN. DeMililloM.A.LosaccoV.PucciniV.Antifungal activity of essential oils from leaves and flowers of Inula viscosa (Asteraceae) by Apulian regionParassitologia441531562002Search in Google Scholar

Cannon R.D., Lamping E., Holmes A.R., Niimi K., Baret P.V, Keniya M.V, Tanabe K., Niimi M., Goffeau A., Monk B.C.: Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 22, 291–321 (2009)CannonR.D.LampingE.HolmesA.R.NiimiK.BaretP.VKeniyaM.VTanabeK.NiimiM.GoffeauA.MonkB.C.Efflux-mediated antifungal drug resistanceClin. Microbiol. Rev.22291321200910.1128/CMR.00051-08266823319366916Search in Google Scholar

Cantelli B.A.M., Bitencourt T.A., Komoto T.T., Beleboni R.O., Marins M., Fachin A.L.: Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrum. Biomed. Pharmacother. 96, 1389–1394 (2017)CantelliB.A.M.BitencourtT.A.KomotoT.T.BeleboniR.O.MarinsM.FachinA.L.Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrumBiomed. Pharmacother.9613891394201710.1016/j.biopha.2017.11.05129174577Search in Google Scholar

Chapman S.W., Sullivan D.C., Cleary J.D.: In search of the holy grail of antifungal therapy. Trans. Am. Clin. Climatol. Assoc. 119, 197–216 (2008)ChapmanS.W.SullivanD.C.ClearyJ.D.In search of the holy grail of antifungal therapyTrans. Am. Clin. Climatol. Assoc.1191972162008Search in Google Scholar

Cheah H.L., Lim V., Sandai D.: Inhibitors of the Glyoxylate Cycle Enzyme ICL1 in Candida albicans for Potential Use as Antifungal Agents. PLoS One, 9, e95951 (2014)CheahH.L.LimV.SandaiD.Inhibitors of the Glyoxylate Cycle Enzyme ICL1 in Candida albicans for Potential Use as Antifungal AgentsPLoS One9e95951201410.1371/journal.pone.0095951400457824781056Search in Google Scholar

Cho S.Y., Jun H. Jin, Lee J.H., Jia Y., Kim K.H., Lee S.J.: Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanisms. FEBS Lett. 585, 3289–3296 (2011)ChoS.Y.JinJun H.LeeJ.H.JiaY.KimK.H.LeeS.J.Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanismsFEBS Lett.58532893296201110.1016/j.febslet.2011.09.01221944868Search in Google Scholar

Conti B.J., Bufalo M.C., Golim M. de A., Bankova V., Sforcin J.M.: Cinnamic Acid is partially involved in propolis immunomodulatory action on human monocytes. Evid. Based. Complement. Alternat. Med. 2013, 109864 (2013)ContiB.J.BufaloM.C.GolimM. de A.BankovaV.SforcinJ.M.Cinnamic Acid is partially involved in propolis immunomodulatory action on human monocytesEvid. Based. Complement. Alternat. Med.2013109864201310.1155/2013/109864367055023762102Search in Google Scholar

Cowen L.E.: The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6, 187–198 (2008)CowenL.E.The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotypeNat. Rev. Microbiol.6187198200810.1038/nrmicro183518246082Search in Google Scholar

Danielewski M., Ksiądzyna D., Szeląg A.: Non-antibiotic use of antibiotics. Post. Mikrobiol. 57, 301–312 (2018)DanielewskiM.KsiądzynaD.SzelągA.Non-antibiotic use of antibioticsPost. Mikrobiol.57301312201810.21307/PM-2018.57.4.301Search in Google Scholar

Denning D.W.: Echinocandins: a new class of antifungal. J. Antimicrob. Chemother. 49, 889–891 (2002)DenningD.W.Echinocandins: a new class of antifungalJ. Antimicrob. Chemother.49889891200210.1093/jac/dkf04512039879Search in Google Scholar

Donovick R., Gold W., Pagano J.F., Stout H.A.: Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot. Annu. 3, 579–86 (1956)DonovickR.GoldW.PaganoJ.F.StoutH.A.Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studiesAntibiot. Annu.3579861956Search in Google Scholar

Dworecka-Kaszak B., Dąbrowska I.: Dermatophytes: new taxonomy and differentiation methods. Review of current state of knowledge about mechanisms of pathogenesis and pathogen-host interaction. Med. Weter. 73, 613–617 (2017)Dworecka-KaszakB.DąbrowskaI.Dermatophytes: new taxonomy and differentiation methods. Review of current state of knowledge about mechanisms of pathogenesis and pathogen-host interactionMed. Weter.73613617201710.21521/mw.5791Search in Google Scholar

Facchini P.J., Johnson A.G., Poupart J., Luca V. de: Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures. Plant Physiol. 111, 687–697 (1996)FacchiniP.J.JohnsonA.G.PoupartJ.LucaV. deUncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell culturesPlant Physiol.111687697199610.1104/pp.111.3.6871578848754678Search in Google Scholar

Fewell A.M., Roddick J.G.: Potato glycoalkaloid impairment of fungal development. Mycol. Res. 101, 597–603 (1997)FewellA.M.RoddickJ.G.Potato glycoalkaloid impairment of fungal developmentMycol. Res.101597603199710.1017/S0953756296002973Search in Google Scholar

Garvey E.P., Hoekstra W.J., Moore W.R., Schotzinger R.J., Long L., Ghannoum M.A.: VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model. Antimicrob. Agents Chemother. 59, 1992–1997 (2015)GarveyE.P.HoekstraW.J.MooreW.R.SchotzingerR.J.LongL.GhannoumM.A.VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig modelAntimicrob. Agents Chemother.5919921997201510.1128/AAC.04902-14435678925605358Search in Google Scholar

Ghannoum M.A., Rice L.B.: Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12, 501–517 (1999)GhannoumM.A.RiceL.B.Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistanceClin. Microbiol. Rev.12501517199910.1128/CMR.12.4.5018892210515900Search in Google Scholar

Gnat S., Łagowski D., Nowakiewicz A., Trościańczyk A., Zięba P.: Infection of Trichophyton verrucosum in cattle breeders, Poland: A 40-year retrospective study on the genomic variability of strains. Mycoses, 61, 681–690 (2018)GnatS.ŁagowskiD.NowakiewiczA.TrościańczykA.ZiębaP.Infection of Trichophyton verrucosum in cattle breeders, Poland: A 40-year retrospective study on the genomic variability of strainsMycoses61681690201810.1111/myc.1279129761873Search in Google Scholar

Gnat S., Łagowski D., Nowakiewicz A., Zięba P.: Phenotypic characterization of enzymatic activity of clinical dermatophyte isolates from animals with and without skin lesions and humans. J. Appl. Microbiol. 125, 700–709 (2018)GnatS.ŁagowskiD.NowakiewiczA.ZiębaP.Phenotypic characterization of enzymatic activity of clinical dermatophyte isolates from animals with and without skin lesions and humansJ. Appl. Microbiol.125700709201810.1111/jam.1392129779226Search in Google Scholar

Gnat S., Łagowski D., Nowakiewicz A., Zięba P.: The host range of dermatophytes, it is at all possible? Phenotypic evaluation of the keratinolytic activity of Trichophyton verrucosum clinical isolates. Mycoses, 62, 274–283 (2019)GnatS.ŁagowskiD.NowakiewiczA.ZiębaP.The host range of dermatophytes, it is at all possible? Phenotypic evaluation of the keratinolytic activity of Trichophyton verrucosum clinical isolatesMycoses62274283201910.1111/myc.1287630537378Search in Google Scholar

Gnat S., Łagowski D., Nowakiewicz A., Zięba P.: Tinea corporis by Microsporum canis in mycological laboratory staff: Unexpected results of epidemiological investigation. Mycoses, 61, 945–953 (2018)GnatS.ŁagowskiD.NowakiewiczA.ZiębaP.Tinea corporis by Microsporum canis in mycological laboratory staff: Unexpected results of epidemiological investigationMycoses61945953201810.1111/myc.1283230030967Search in Google Scholar

Gnat S., Nowakiewicz A., Łagowski D., Trościańczyk A., Zięba P.: Multiple-strain Trichophyton mentagrophytes infection in a silver fox (Vulpes vulpes) from a breeding farm. Med. Mycol. 57, 171–180 (2019)GnatS.NowakiewiczA.ŁagowskiD.TrościańczykA.ZiębaP.Multiple-strain Trichophyton mentagrophytes infection in a silver fox (Vulpes vulpes) from a breeding farmMed. Mycol.57171180201910.1093/mmy/myy01129534233Search in Google Scholar

Gnat S., Nowakiewicz A., Łagowski D., Zięba P.: Host- and pathogen-dependent susceptibility and predisposition to dermatophytosis. J. Med. Microbiol. 68, 823–836 (2019)GnatS.NowakiewiczA.ŁagowskiD.ZiębaP.Host- and pathogen-dependent susceptibility and predisposition to dermatophytosisJ. Med. Microbiol.68823836201910.1099/jmm.0.00098231050630Search in Google Scholar

Gnat S., Nowakiewicz A., Zięba P.: Taxonomy of dermatophytes – the classification systems may change but the identification problems remain the same. Post. Mikrobiol. 58, 49–58 (2019)GnatS.NowakiewiczA.ZiębaP.Taxonomy of dermatophytes – the classification systems may change but the identification problems remain the samePost. Mikrobiol.584958201910.21307/PM-2019.58.1.049Search in Google Scholar

Gull K., Trinci A.P.: Griseofulvin inhibits fungal mitosis. Nature, 244, 292–294 (1973)GullK.TrinciA.P.Griseofulvin inhibits fungal mitosisNature244292294197310.1038/244292a04583105Search in Google Scholar

Hau C.S., Tada Y., Kanda N., Watanabe S.: Immunoresponses in dermatomycoses. J. Dermatol. 42, 236–244 (2015)HauC.S.TadaY.KandaN.WatanabeS.Immunoresponses in dermatomycosesJ. Dermatol.42236244201510.1111/1346-8138.12718Search in Google Scholar

Havlickova B., Czaika V.A., Friedrich M.: Epidemiological trends in skin mycoses worldwide. Mycoses, 51, 2–15 (2008)HavlickovaB.CzaikaV.A.FriedrichM.Epidemiological trends in skin mycoses worldwideMycoses51215200810.1111/j.1439-0507.2008.01606.xSearch in Google Scholar

Hopkins J.G., Hillegas A.B.: Dermatophytosis at an infantry post; incidence and characteristics of infections by three species of fungi. J. Invest. Dermatol. 8, 291–316 (1947)HopkinsJ.G.HillegasA.B.Dermatophytosis at an infantry post; incidence and characteristics of infections by three species of fungiJ. Invest. Dermatol.8291316194710.1038/jid.1947.44Search in Google Scholar

Houghton P., Patel N., Jurzysta M., Biely Z., Cheung C.: Antidermatophyte activity of medicago extracts and contained saponins and their structure-activity relationships. Phytother. Res. 20, 1061–1066 (2006)HoughtonP.PatelN.JurzystaM.BielyZ.CheungC.Antidermatophyte activity of medicago extracts and contained saponins and their structure-activity relationshipsPhytother. Res.2010611066200610.1002/ptr.1995Search in Google Scholar

Hsu C.C., Lai W.L., Chuang K.C., Lee M.H., Tsai Y.C.: The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med. Mycol. 51, 473–482 (2013)HsuC.C.LaiW.L.ChuangK.C.LeeM.H.TsaiY.C.The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicansMed. Mycol.51473482201310.3109/13693786.2012.743051Search in Google Scholar

Hube B., Hay R., Brasch J., Veraldi S., Schaller M.: Dermatomycoses and inflammation: The adaptive balance between growth, damage, and survival. J. Mycol. Med. 25, e44–58 (2015)HubeB.HayR.BraschJ.VeraldiS.SchallerM.Dermatomycoses and inflammation: The adaptive balance between growth, damage, and survivalJ. Mycol. Med.25e4458201510.1016/j.mycmed.2014.11.002Search in Google Scholar

Jerez Puebla L.E.: Fungal Infections in Immunosuppressed Patients. w: Immunodeficiency. red.: InTech, 2012Jerez PueblaL.E.Fungal Infections in Immunosuppressed PatientsImmunodeficiencyInTech2012Search in Google Scholar

Kanafani Z.A., Perfect J.R.: Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46, 120–128 (2008)KanafaniZ.A.PerfectJ.R.Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impactClin. Infect. Dis.46120128200810.1086/524071Search in Google Scholar

Kerkenaar A.: Inhibition of the sterol Δ14-reductase and Δ8→Δ7-isomerase in fungi. Biochem. Soc. Trans. 18, 59 LP – 61 (1990)KerkenaarA.Inhibition of the sterol Δ14-reductase and Δ8→Δ7-isomerase in fungiBiochem. Soc. Trans.1859 LP61199010.1042/bst0180059Search in Google Scholar

Keukens E.A., Vrije T. de, Boom C. van den, Waard P. de, Plasman H.H., Thiel F., Chupin V., Jongen W.M., Kruijff B. de: Molecular basis of glycoalkaloid induced membrane disruption. Biochim. Biophys. Acta 1240, 216–228 (1995)KeukensE.A.VrijeT. deBoom C.van denWaardP. dePlasmanH.H.ThielF.ChupinV.JongenW.M.KruijffB. deMolecular basis of glycoalkaloid induced membrane disruptionBiochim. Biophys. Acta1240216228199510.1016/0005-2736(95)00186-7Search in Google Scholar

Khan A., Ahmad A., Manzoor N., Khan L.A.: Antifungal activities of Ocimum sanctum essential oil and its lead molecules. Nat. Prod. Commun. 5, 345–349 (2010)KhanA.AhmadA.ManzoorN.KhanL.A.Antifungal activities of Ocimum sanctum essential oil and its lead moleculesNat. Prod. Commun.5345349201010.1177/1934578X1000500235Search in Google Scholar

Klein G., Ruben C., Upmann M.: Antimicrobial activity of essential oil components against potential food spoilage microorganisms. Curr. Microbiol. 67, 200–208 (2013)KleinG.RubenC.UpmannM.Antimicrobial activity of essential oil components against potential food spoilage microorganismsCurr. Microbiol.67200208201310.1007/s00284-013-0354-123503789Search in Google Scholar

Komoto T.T., Silva G., Bitencourt T., Cestari B.A., Marins M., Fachin A.L.: Evaluation of antifungal and cytotoxic activity of trans-Chalcone and α-Solanine. BMC Proc. 8, P36–P36 (2014)KomotoT.T.SilvaG.BitencourtT.CestariB.A.MarinsM.FachinA.L.Evaluation of antifungal and cytotoxic activity of trans-Chalcone and α-SolanineBMC Proc.8P36P36201410.1186/1753-6561-8-S4-P36Search in Google Scholar

Koselny K., Green J., DiDone L., Halterman J.P., Fothergill A.W., Wiederhold N.P., Patterson T.F., Cushion M.T., Rappelye C., Wellington M., Krysan D.J.: The celecoxib derivative ar-12 has broad-spectrum antifungal activity in vitro and improves the activity of fluconazole in a murine model of Cryptococcosis. Antimicrob. Agents Chemother. 60, 7115–7127 (2016)KoselnyK.GreenJ.DiDoneL.HaltermanJ.P.FothergillA.W.WiederholdN.P.PattersonT.F.CushionM.T.RappelyeC.WellingtonM.KrysanD.J.The celecoxib derivative ar-12 has broad-spectrum antifungal activity in vitro and improves the activity of fluconazole in a murine model of CryptococcosisAntimicrob. Agents Chemother.6071157127201610.1128/AAC.01061-16511899027645246Search in Google Scholar

Krysan D.J.: Toward improved anti-cryptococcal drugs: Novel molecules and repurposed drugs. Fungal Genet. Biol. 78, 93–98 (2015)KrysanD.J.Toward improved anti-cryptococcal drugs: Novel molecules and repurposed drugsFungal Genet. Biol.789398201510.1016/j.fgb.2014.12.00125514636Search in Google Scholar

Kushwaha A.S., Sharma P., Shivakumar H.N., Rappleye C., Zukiwski A., Proniuk S., Murthy S.N.: Trans-ungual Delivery of AR-12, a Novel Antifungal Drug. AAPS PharmSciTech 18, 2702–2705 (2017)KushwahaA.S.SharmaP.ShivakumarH.N.RappleyeC.ZukiwskiA.ProniukS.MurthyS.N.Trans-ungual Delivery of AR-12, a Novel Antifungal DrugAAPS PharmSciTech1827022705201710.1208/s12249-017-0752-y28289970Search in Google Scholar

Lamb J.H., Rebell G., Jones P.E., Morgan R.J., Knox J.M.: Combined therapy in histoplasmosis and coccidioidomycosis: Methyltestosterone and Meth-Dia-Mer-Sulfonamides. JAMA Dermatology 70, 695–712 (1954)LambJ.H.RebellG.JonesP.E.MorganR.J.KnoxJ.M.Combined therapy in histoplasmosis and coccidioidomycosis: Methyltestosterone and Meth-Dia-Mer-SulfonamidesJAMA Dermatology70695712195410.1001/archderm.1954.0154024000100113206415Search in Google Scholar

Lee W., Lee D.G.: An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans. IUBMB Life 66, 780–785 (2014)LeeW.LeeD.G.An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicansIUBMB Life66780785201410.1002/iub.132625380239Search in Google Scholar

Leem S.H., Park J.E., Kim I.S., Chae J.Y., Sugino A., Sunwoo Y.: The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol. Cells, 15, 55–61 (2003)LeemS.H.ParkJ.E.KimI.S.ChaeJ.Y.SuginoA.SunwooY.The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiaeMol. Cells1555612003Search in Google Scholar

Lemke A., Kiderlen A.F., Kayser O.: Amphotericin B. Appl. Microbiol. Biotechnol. 68, 151–162 (2005)LemkeA.KiderlenA.F.KayserO.Amphotericin BAppl. Microbiol. Biotechnol.68151162200510.1007/s00253-005-1955-915821914Search in Google Scholar

Lewis R.E.: Current concepts in antifungal pharmacology. Mayo Clin. Proc. 86, 805–817 (2011)LewisR.E.Current concepts in antifungal pharmacologyMayo Clin. Proc.86805817201110.4065/mcp.2011.0247314638121803962Search in Google Scholar

Linck V.M., Silva A.L. da, Figueiro M., Caramao E.B., Moreno P.R.H., Elisabetsky E.: Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine, 17, 679–683 (2010)LinckV.M.SilvaA.L. daFigueiroM.CaramaoE.B.MorenoP.R.H.ElisabetskyE.Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in micePhytomedicine17679683201010.1016/j.phymed.2009.10.00219962290Search in Google Scholar

Liu H., Li J., Zhao W., Bao L., Song X., Xia Y., Wang X., Zhang C., Wang X., Yao X., Li M.: Fatty acid synthase inhibitors from Geum japonicum Thunb. var. chinense. Chem. Biodivers. 6, 402–410 (2009)LiuH.LiJ.ZhaoW.BaoL.SongX.XiaY.WangX.ZhangC.WangX.YaoX.LiM.Fatty acid synthase inhibitors from Geum japonicum Thunb. var. chinenseChem. Biodivers.6402410200910.1002/cbdv.20070046219319862Search in Google Scholar

Łagowski D., Gnat S., Nowakiewicz A., Osińska M., Trościańczyk A., Zięba P.: In search of the source of dermatophytosis: Epidemiological analysis of Trichophyton verrucosum infection in llamas and the breeder (case report). Zoonoses Public Health, 66, 982–989 (2019)ŁagowskiD.GnatS.NowakiewiczA.OsińskaM.TrościańczykA.ZiębaP.In search of the source of dermatophytosis: Epidemiological analysis of Trichophyton verrucosum infection in llamas and the breeder (case report)Zoonoses Public Health66982989201910.1111/zph.1264831538413Search in Google Scholar

Łagowski D., Gnat S., Nowakiewicz A., Osińska M., Zięba P.: The prevalence of symptomatic dermatophytoses in dogs and cats and the pathomechanism of dermatophyte infections. Post. Mikrobiol. 58, 165–176 (2019)ŁagowskiD.GnatS.NowakiewiczA.OsińskaM.ZiębaP.The prevalence of symptomatic dermatophytoses in dogs and cats and the pathomechanism of dermatophyte infectionsPost. Mikrobiol.58165176201910.21307/PM-2019.58.2.165Search in Google Scholar

Macura A.B., Pawlik B.: Zarys mikologii lekarskiej. [w:] Zarys mikologii lekarskiej. red.: E. Baran. Volumed, Wrocław 1998, 648MacuraA.B.PawlikB.Zarys mikologii lekarskiejZarys mikologii lekarskiejBaranE.VolumedWrocław1998648Search in Google Scholar

Martinez-Rossi N.M., Peres N.T.A., Rossi A.: Pathogenesis of dermatophytosis: sensing the host tissue. Mycopathologia, 182, 215–227 (2017)Martinez-RossiN.M.PeresN.T.A.RossiA.Pathogenesis of dermatophytosis: sensing the host tissueMycopathologia182215227201710.1007/s11046-016-0057-927590362Search in Google Scholar

Martinez-Rossi N.M., Bitencourt T.A., Peres N.T.A., Lang E.A.S., Gomes E. V, Quaresemin N.R., Martins M.P., Lopes L., Rossi A.: Dermatophyte resistance to antifungal drugs: mechanisms and prospectus. Front. Microbiol. 9, 1108 (2018)Martinez-RossiN.M.BitencourtT.A.PeresN.T.A.LangE.A.S.GomesE. VQuareseminN.R.MartinsM.P.LopesL.RossiA.Dermatophyte resistance to antifungal drugs: mechanisms and prospectusFront. Microbiol.91108201810.3389/fmicb.2018.01108598690029896175Search in Google Scholar

Martinez-Rossi N.M., Peres N.T.A., Rossi A.: Antifungal resistance mechanisms in dermatophytes. Mycopathologia, 166, 369–383 (2008)Martinez-RossiN.M.PeresN.T.A.RossiA.Antifungal resistance mechanisms in dermatophytesMycopathologia166369383200810.1007/s11046-008-9110-718478356Search in Google Scholar

McCarthy M.W., Kontoyiannis D.P., Cornely O.A., Perfect J.R., Walsh T.J.: Novel agents and drug targets to meet the challenges of resistant fungi. J. Infect. Dis. 216, S474–S483 (2017)McCarthyM.W.KontoyiannisD.P.CornelyO.A.PerfectJ.R.WalshT.J.Novel agents and drug targets to meet the challenges of resistant fungiJ. Infect. Dis.216S474S483201710.1093/infdis/jix13028911042Search in Google Scholar

Medeiros M.R.F., Prado L.A. de M., Fernandes V.C., Figueiredo S.S., Coppede J., Martins J., Fiori G.M.L., Martinez-Rossi N.M., Beleboni R.O., Contini S.H.T., Pereira P.S., Fachin A.L.: Antimicrobial activities of indole alkaloids from Tabernaemontana catharinensis. Nat. Prod. Commun. 6, 193–196 (2011)MedeirosM.R.F.PradoL.A. de M.FernandesV.C.FigueiredoS.S.CoppedeJ.MartinsJ.FioriG.M.L.Martinez-RossiN.M.BeleboniR.O.ContiniS.H.T.PereiraP.S.FachinA.L.Antimicrobial activities of indole alkaloids from Tabernaemontana catharinensisNat. Prod. Commun.6193196201110.1177/1934578X1100600209Search in Google Scholar

Mshvildadze V., Favel A., Delmas F., Elias R., Faure R., Decanosidze G., Kemertelidze E., Balansard G.: Antifungal and antiprotozoal activities of saponins from Hedera colchica. Pharmazie, 55, 325–326 (2000)MshvildadzeV.FavelA.DelmasF.EliasR.FaureR.DecanosidzeG.KemertelidzeE.BalansardG.Antifungal and antiprotozoal activities of saponins from Hedera colchicaPharmazie553253262000Search in Google Scholar

Cardoso N.N.R., Alviano C. S., Blank A., Teresa V. Romanos M., Fonseca B., Rozental S., Rodrigues I., Alviano D.: Synergism effect of the essential oil from Ocimum basilicum var. maria bonita and its major components with fluconazole and its influence on ergosterol biosynthesis. Evidence-Based Complement. Altern. Med. 2016, 1–12 (2016)CardosoN.N.R.AlvianoC. S.BlankA.TeresaV. Romanos M.FonsecaB.RozentalS.RodriguesI.AlvianoD.Synergism effect of the essential oil from Ocimum basilicum var. maria bonita and its major components with fluconazole and its influence on ergosterol biosynthesisEvidence-Based Complement. Altern. Med.20161122016Search in Google Scholar

Nakagawa H., Nishihara M., Nakamura T.: Kerion and tinea capitis. IDCases 14, e00418–e00418 (2018)NakagawaH.NishiharaM.NakamuraT.Kerion and tinea capitisIDCases14e00418e00418201810.1016/j.idcr.2018.e00418603109829988774Search in Google Scholar

Narender T., Papi Reddy K.: A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron Lett. 48, 3177–3180 (2007)NarenderT.Papi ReddyK.A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherateTetrahedron Lett.4831773180200710.1016/j.tetlet.2007.03.054Search in Google Scholar

Negri M., Salci T.P., Shinobu-Mesquita C.S., Capoci I.R.G., Svidzinski T.I.E., Kioshima E.S.: Early state research on antifungal natural products. Molecules, 19, 2925–2956 (2014)NegriM.SalciT.P.Shinobu-MesquitaC.S.CapociI.R.G.SvidzinskiT.I.E.KioshimaE.S.Early state research on antifungal natural productsMolecules1929252956201410.3390/molecules19032925Search in Google Scholar

Nowakowska Z.: A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 42, 125–137 (2007)NowakowskaZ.A review of anti-infective and anti-inflammatory chalconesEur. J. Med. Chem.42125137200710.1016/j.ejmech.2006.09.019Search in Google Scholar

Odds F., Brown A., Gow N.: Antifungal agents: Mechanisms of action. Trends Microbiol. 11, 272–279 (2003)OddsF.BrownA.GowN.Antifungal agents: Mechanisms of actionTrends Microbiol.11272279200310.1016/S0966-842X(03)00117-3Search in Google Scholar

Oliveira Lima M.I. de, Araujo de Medeiros A.C., Souza Silva K.V, Cardoso G.N., Oliveira Lima E. de, Oliveira Pereira F. de: Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 27, 195–202 (2017)Oliveira LimaM.I. deAraujo de MedeirosA.C.Souza SilvaK.VCardosoG.N.Oliveira LimaE. deOliveira PereiraF. deInvestigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrumJ. Mycol. Med.27195202201710.1016/j.mycmed.2017.01.011Search in Google Scholar

Oliveira Pereira F. de, Alves Wanderley P., Cavalcanti Viana F.A., Baltazar de Lima R., Barbosa de Sousa F., Oliveira Lima E. de: Growth inhibition and morphological alterations of Trichophyton rubrum induced by essential oil from Cymbopogon Winterianus Jowitt Ex Bor. Braz. J. Microbiol. 42, 233–242 (2011)Oliveira PereiraF. deAlves WanderleyP.Cavalcanti VianaF.A.Baltazar de LimaR.Barbosa de SousaF.Oliveira LimaE. deGrowth inhibition and morphological alterations of Trichophyton rubrum induced by essential oil from Cymbopogon Winterianus Jowitt Ex BorBraz. J. Microbiol.42233242201110.1590/S1517-83822011000100029Search in Google Scholar

Pandey A., Rai M.: Antimycotic potential in some naturally occurring essential oils. w: Plant-derived antimycotics: Current trends and future prospects. red.: M. K. Rai, D. Mares. Haworth Press, London 2003, s. 344–345PandeyA.RaiM.Antimycotic potential in some naturally occurring essential oilsPlant-derived antimycotics: Current trends and future prospectsRaiM. K.MaresD.Haworth PressLondon2003344345Search in Google Scholar

Peana A.T., Marzocco S., Popolo A., Pinto A.: (–)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci. 78, 719–723 (2006)PeanaA.T.MarzoccoS.PopoloA.PintoA.(–)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compoundLife Sci.78719723200610.1016/j.lfs.2005.05.065Search in Google Scholar

Pianalto K.M., Alspaugh J.A.: New horizons in antifungal therapy. J. Fungi 2, 26 (2016)PianaltoK.M.AlspaughJ.A.New horizons in antifungal therapyJ. Fungi226201610.3390/jof2040026Search in Google Scholar

Pinto C.L., Uchoa D.E.D.A., Silveira E.R., Deusdênia O., Pessoa L.: Glicoalcaloides antifúngicos, flavonoides e outros constituintes químicos de Solanum asperum. Quim. Nov. Fac. Ciências da Saúde, Univ. Brasília 34, 284–288 (2011)PintoC.L.UchoaD.E.D.A.SilveiraE.R.DeusdêniaO.PessoaL.Glicoalcaloides antifúngicos, flavonoides e outros constituintes químicos de Solanum asperumQuim. Nov. Fac. Ciências da Saúde, Univ. Brasília34284288201110.1590/S0100-40422011000200021Search in Google Scholar

Portillo A., Vila R., Freixa B., Adzet T., Canigueral S.: Antifungal activity of Paraguayan plants used in traditional medicine. J. Ethnopharmacol. 76, 93–98 (2001)PortilloA.VilaR.FreixaB.AdzetT.CanigueralS.Antifungal activity of Paraguayan plants used in traditional medicineJ. Ethnopharmacol.769398200110.1016/S0378-8741(01)00214-8Search in Google Scholar

Prus A.: Pharmacological activities of saponins. Postępy Fitoter. 200–204 (2003)PrusA.Pharmacological activities of saponinsPostępy Fitoter.2002042003Search in Google Scholar

Roemer T., Krysan D.J.: Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 4, (2014)RoemerT.KrysanD.J.Antifungal drug development: challenges, unmet clinical needs, and new approachesCold Spring Harb. Perspect. Med.4201410.1101/cshperspect.a019703399637324789878Search in Google Scholar

Ryder N.S., Mieth H.: Allylamine antifungal drugs. Curr. Top. Med. Mycol. 4, 158–188 (1992)RyderN.S.MiethH.Allylamine antifungal drugsCurr. Top. Med. Mycol.4158188199210.1007/978-1-4612-2762-5_61732066Search in Google Scholar

Safdar A., Bannister T.W., Safdar Z.: The predictors of outcome in immunocompetent patients with hematogenous candidasis. Int. J. Infect. Dis. 8, 180–186 (2004)SafdarA.BannisterT.W.SafdarZ.The predictors of outcome in immunocompetent patients with hematogenous candidasisInt. J. Infect. Dis.8180186200410.1016/j.ijid.2003.05.00315109594Search in Google Scholar

Schell W.A., Jones A.M., Borroto-Esoda K., Alexander B.D.: Antifungal activity of scy-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species. Antimicrob. Agents Chemother. 61, (2017)SchellW.A.JonesA.M.Borroto-EsodaK.AlexanderB.D.Antifungal activity of scy-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida speciesAntimicrob. Agents Chemother.61201710.1128/AAC.01102-17565510028827419Search in Google Scholar

Sousa D.P. de, Nobrega F.F.F., Santos C.C.M.P., Almeida R.N. de: Anticonvulsant activity of the linalool enantiomers and racemate: investigation of chiral influence. Nat. Prod. Commun. 5, 1847–1851 (2010)SousaD.P. deNobregaF.F.F.SantosC.C.M.P.AlmeidaR.N. deAnticonvulsant activity of the linalool enantiomers and racemate: investigation of chiral influenceNat. Prod. Commun.518471851201010.1177/1934578X1000501201Search in Google Scholar

Stefanowicz-Hajduk J., Ochocka R.: Steroidal saponins – occurrence, characteristic and application in therapeutics. Postępy Fitoter. 36–40 (2006)Stefanowicz-HajdukJ.OchockaR.Steroidal saponins – occurrence, characteristic and application in therapeuticsPostępy Fitoter.36402006Search in Google Scholar

Svetaz L., Aguero M.B., Alvarez S., Luna L., Feresin G., Derita M., Tapia A., Zacchino S.: Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action. Planta Med. 73, 1074–1080 (2007)SvetazL.AgueroM.B.AlvarezS.LunaL.FeresinG.DeritaM.TapiaA.ZacchinoS.Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of actionPlanta Med.7310741080200710.1055/s-2007-98156117628836Search in Google Scholar

Vandeputte P., Ferrari S., Coste A.: Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2012, 713687 (2012)VandeputteP.FerrariS.CosteA.Antifungal resistance and new strategies to control fungal infectionsInt. J. Microbiol.2012713687201210.1155/2012/713687323645922187560Search in Google Scholar

Waldorf A.R., Polak A.: Mechanisms of action of 5-fluorocytosine. Antimicrob. Agents Chemother. 23, 79–85 (1983)WaldorfA.R.PolakA.Mechanisms of action of 5-fluorocytosineAntimicrob. Agents Chemother.237985198310.1128/AAC.23.1.791846216338821Search in Google Scholar

Wieder L.M.: Fungistatic and fungicidal effects of two wood-preserving chemicals on human dermatophytes: ortho (2 chlorophenyl) phenol sodium and tetrachlorphenol sodium. JAMA Dermatology 31, 644–657 (1935)WiederL.M.Fungistatic and fungicidal effects of two wood-preserving chemicals on human dermatophytes: ortho (2 chlorophenyl) phenol sodium and tetrachlorphenol sodiumJAMA Dermatology31644657193510.1001/archderm.1935.01460230031004Search in Google Scholar

Yun J., Lee H., Ko H.J., Woo E.R., Lee D.G.: Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochim. Biophys. Acta – Biomembr. 1848, 695–701 (2015)YunJ.LeeH.KoH.J.WooE.R.LeeD.G.Fungicidal effect of isoquercitrin via inducing membrane disturbanceBiochim. Biophys. Acta – Biomembr.1848695701201510.1016/j.bbamem.2014.11.01925445674Search in Google Scholar

eISSN:
2545-3149
Lingue:
Inglese, Polacco
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology