Accesso libero

Chitinases As The Key To The Interaction Between Plants And Microorganisms

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adrangi S., Faramarzi M.A.: From bacteria to human: A journey into the world of chitinases. Biotech. Adv. 31, 1786–1795 (2013)AdrangiS.FaramarziM.A.From bacteria to human: A journey into the world of chitinasesBiotech. Adv.3117861795201310.1016/j.biotechadv.2013.09.01224095741Search in Google Scholar

Aghazadeh R., Zamani M.R., Motallebi M., Moradyar M., Moghadassi Jahromi Z. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistace to Sclerotinia sclerotiorum. World J. Microbiol. Biotechnol. 32, 144–155 (2016)AghazadehR.ZamaniM.R.MotallebiM.MoradyarM.Moghadassi JahromiZ.Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistace to Sclerotinia sclerotiorumWorld J. Microbiol. Biotechnol.32144155201610.1007/s11274-016-2104-627430511Search in Google Scholar

Arora N.K., Kim M.J., Kang S.C., Maheshwari D.K.: Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53, 207–212 (2007)AroraN.K.KimM.J.KangS.C.MaheshwariD.K.Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solaniCan. J. Microbiol.53207212200710.1139/w06-11917496968Search in Google Scholar

Bai Y., Eijsink V.G.H., Kielak A.M., van Veen J.A., de Boer W.: Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environ. Microbiol. 18, 38–49 (2016)BaiY.EijsinkV.G.H.KielakA.M.van VeenJ.A.de BoerW.Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteriaEnviron. Microbiol.183849201610.1111/1462-2920.1254524947206Search in Google Scholar

Balasubramanian V., Vashisht D., Cletus J., Sakthivel N.: Plant beta-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol. Lett. 34, 1983–1990 (2012)BalasubramanianV.VashishtD.CletusJ.SakthivelN.Plant beta-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungiBiotechnol. Lett.3419831990201210.1007/s10529-012-1012-622850791Search in Google Scholar

Barile E., Bonanomi G., Antignani V., Zolfaghari B., Sajjadi S.E., Scala F., Lanzotti V.: Saponins from Allium minutiflorum with antifungal activity. Phytochem. 68, 596–603 (2007)BarileE.BonanomiG.AntignaniV.ZolfaghariB.SajjadiS.E.ScalaF.LanzottiV.Saponins from Allium minutiflorum with antifungal activityPhytochem.68596603200710.1016/j.phytochem.2006.10.00917118413Search in Google Scholar

Balzergue C., Puech-Pagès V., Bécard G., Rochange S.F.: The regulation of arbuscularmycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J. Exp. Bot. 62, 1049–1060 (2011)BalzergueC.Puech-PagèsV.BécardG.RochangeS.F.The regulation of arbuscularmycorrhizal symbiosis by phosphate in pea involves early and systemic signalling eventsJ. Exp. Bot.6210491060201110.1093/jxb/erq335302239921045005Search in Google Scholar

Bhattacharyya P.N., Jha D.K.: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327–1350 (2012)BhattacharyyaP.N.JhaD.K.Plant growth-promoting rhizobacteria (PGPR): emergence in agricultureWorld J. Microbiol. Biotechnol.2813271350201210.1007/s11274-011-0979-922805914Search in Google Scholar

Bonanomi A., Wiemken A., Boller T., Salzer P.: Local induction of a mycorrhiza specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol. 3, 194–199 (2001)BonanomiA.WiemkenA.BollerT.SalzerP.Local induction of a mycorrhiza specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbusculesPlant Biol.3194199200110.1055/s-2001-12902Search in Google Scholar

Bonfante P., Desirò A.: Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J. 11, 1727–1735 (2017)BonfanteP.DesiròA.Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in MucoromycotaISME J.1117271735201710.1038/ismej.2017.21552002628387771Search in Google Scholar

Brzezinska M.S., Jankiewicz U., Walczak M.: Bio degradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeterior. Biodegr. 84, 104–110 (2013)BrzezinskaM.S.JankiewiczU.WalczakM.Bio degradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosusInt Biodeterior. Biodegr.84104110201310.1016/j.ibiod.2012.05.038Search in Google Scholar

Cai J., Staehelin C. i wsp.: Role of the Nod Factor Hydrolase MtNFH1 in Regulating Nod Factor Levels during Rhizobial Infection and in Mature Nodules of Medicago truncatula. Plant Cell 30, 397–414 (2018)CaiJ.StaehelinC.i wspRole of the Nod Factor Hydrolase MtNFH1 in Regulating Nod Factor Levels during Rhizobial Infection and in Mature Nodules of Medicago truncatulaPlant Cell30397414201810.1105/tpc.17.00420586869729367305Search in Google Scholar

Chibeba A.M., Kyei-Boahen S., Guimarães M.F., Nogueira M.A., Hungria M.: Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique. Agri. Eco. Environ. 246, 291–305 (2017)ChibebaA.M.Kyei-BoahenS.GuimarãesM.F.NogueiraM.A.HungriaM.Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in MozambiqueAgri. Eco. Environ.246291305201710.1016/j.agee.2017.06.017552195428775390Search in Google Scholar

Desirò A., Faccio A., Kaech A., Bidartondo M.I., Bonfante P.: Endogone, one of the oldest plant-associated fungi, host unique Mollicutes-related endobacteria. New Phytol. 205, 1464–1472 (2015)DesiròA.FaccioA.KaechA.BidartondoM.I.BonfanteP.Endogone, one of the oldest plant-associated fungi, host unique Mollicutes-related endobacteriaNew Phytol.20514641472201510.1111/nph.1313625345989Search in Google Scholar

Deveau, A., Bonito G., Uehling J., Paoletti M., Becker M., Bindschedler S., Hacquard S., Hervé V., Labbé J., Lastovetsky O.: Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018)DeveauA.BonitoG.UehlingJ.PaolettiM.BeckerM.BindschedlerS.HacquardS.HervéV.LabbéJ.LastovetskyO.Bacterial-fungal interactions: ecology, mechanisms and challengesFEMS Microbiol. Rev.42335352201810.1093/femsre/fuy00829471481Search in Google Scholar

Dowd P.F., Naumann T.A., Price N.P.J., Johnson E.T.: Identification of a maize (Zea mays) chitinase allele sequence suitable for a role in ear rot fungal resistance. Agri. Gene 7, 15–22 (2018)DowdP.F.NaumannT.A.PriceN.P.J.JohnsonE.T.Identification of a maize (Zea mays) chitinase allele sequence suitable for a role in ear rot fungal resistanceAgri. Gene71522201810.1016/j.aggene.2017.10.001Search in Google Scholar

Do Amaral D.O.J., De Almeida C.M.A., Correia M.T.D.S., De Menezes Lima V.L., Da Silva M.V.: Isolation and Characterization of Chitinase from Tomato Infected by Fusarium oxysporum f. sp. lycopersici. J. Phytopathol. 160, 741–744 (2012)Do AmaralD.O.J.De AlmeidaC.M.A.CorreiaM.T.D.S.De Menezes LimaV.L.Da SilvaM.V.Isolation and Characterization of Chitinase from Tomato Infected by Fusarium oxysporum f. sp. lycopersiciJ. Phytopathol.160741744201210.1111/j.1439-0434.2012.01960.xSearch in Google Scholar

Elfstrand M., Feddermann N., Ineichen K., Nagaraj V.J., Wiemken A., Boller T., Salzer P.: Ectopic expression of the mycorrhiza-specific chitinase gene Mtchit 3-3 in Medicago truncatula root-organ cultures stimulates spore germination of glomalean fungi. New Phytol. 167, 557–570 (2005)ElfstrandM.FeddermannN.IneichenK.NagarajV.J.WiemkenA.BollerT.SalzerP.Ectopic expression of the mycorrhiza-specific chitinase gene Mtchit 3-3 in Medicago truncatula root-organ cultures stimulates spore germination of glomalean fungiNew Phytol.167557570200510.1111/j.1469-8137.2005.01397.x15998406Search in Google Scholar

Frettinger P., Herrmann S., Lapeyrie F., Oelmüller R., Buscot F.: Differential expression of two class III chitinases in two types of roots of Quercus robur during pre-mycorrhizal interactions with Piloderma croceum. Mycorrhiza 16, 219–223 (2006)FrettingerP.HerrmannS.LapeyrieF.OelmüllerR.BuscotF.Differential expression of two class III chitinases in two types of roots of Quercus robur during pre-mycorrhizal interactions with Piloderma croceumMycorrhiza16219223200610.1007/s00572-006-0036-y16523351Search in Google Scholar

Frey-Klett P., Burlinson P., Deveau A., Barret M., Tarkka M., Sarniguet A.: Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75, 583–609 (2011)Frey-KlettP.BurlinsonP.DeveauA.BarretM.TarkkaM.SarniguetA.Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologistsMicrobiol. Mol. Biol. Rev.75583609201110.1128/MMBR.00020-11323273622126995Search in Google Scholar

Fürstenberg-Hägg J., Zagrobelny M., Bak S.: Plant defense against insect herbivores. Int. J. Mol. Sci. 14, 10242–10297 (2013)Fürstenberg-HäggJ.ZagrobelnyM.BakS.Plant defense against insect herbivoresInt. J. Mol. Sci.141024210297201310.3390/ijms140510242Search in Google Scholar

Garg N., Gupta H.: Isolation and purification of fungal pathogen (Macrophomina phaseolina) induced chitinase from moth beans (Phaseolus aconitifolius). J. Phar. Bioall. Sci. 2, 38–43 (2010)GargN.GuptaH.Isolation and purification of fungal pathogen (Macrophomina phaseolina) induced chitinase from moth beans (Phaseolus aconitifolius)J. Phar. Bioall. Sci.23843201010.4103/0975-7406.62708Search in Google Scholar

Ghani A.: Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Ir. J. Toxicol. 3, 325–334 (2011)GhaniA.Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.)Ir. J. Toxicol.33253342011Search in Google Scholar

Gherbawy Y., Elhariry H., Altalhi A., El-Deeb B., Khiralla G.: Molecular screening of Streptomyces isolates for antifungal activity and family 19 chitinase enzymes. J. Microbiol. 50, 459–468 (2012)GherbawyY.ElhariryH.AltalhiA.El-DeebB.KhirallaG.Molecular screening of Streptomyces isolates for antifungal activity and family 19 chitinase enzymesJ. Microbiol.50459468201210.1007/s12275-012-2095-4Search in Google Scholar

Gomaa E.Z.: Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J. Microbiol. 50, 103–111 (2012)GomaaE.Z.Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrolJ. Microbiol.50103111201210.1007/s12275-012-1343-ySearch in Google Scholar

Gonzalez-Franco A.C., Deobald L.A., Spivak A., Crawford D.L.: Actinobacterial chitinase-like enzymes: profiles of rhizosphere versus non-rhizosphere isolates. Can. J. Microbiol. 49, 683–698 (2003)Gonzalez-FrancoA.C.DeobaldL.A.SpivakA.CrawfordD.L.Actinobacterial chitinase-like enzymes: profiles of rhizosphere versus non-rhizosphere isolatesCan. J. Microbiol.49683698200310.1139/w03-089Search in Google Scholar

Grayer R.J., Kokubun T.: Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochem. 56, 253–263 (2001)GrayerR.J.KokubunT.Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plantsPhytochem.56253263200110.1016/S0031-9422(00)00450-7Search in Google Scholar

Gupta P., Ravi I., Sharma V.: Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaría brassicicola. J. Plant Inter. 8, 155–161 (2013)GuptaP.RaviI.SharmaV.Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaría brassicicolaJ. Plant Inter.81551612013Search in Google Scholar

Gupta R., Deswal R.: Refolding of β-stranded class I chitinases of Hippophae rhanmoides enhances the antifreeze activity during cold acclimation. PLoS One, 9, e91723 (2014)GuptaR.DeswalR.Refolding of β-stranded class I chitinases of Hippophae rhanmoides enhances the antifreeze activity during cold acclimationPLoS One9e91723201410.1371/journal.pone.0091723395359324626216Search in Google Scholar

Hammami I., Siala R., Jridi M., Ktari N., Nasri M., Mohamedali T. Partial purification and characterization of chiIO8, a ovel antifungal chitinase produced by Bacillus cereus IO8. J. Appl. Microbiol. 115, 358–366 (2013)HammamiI.SialaR.JridiM.KtariN.NasriM.MohamedaliT.Partial purification and characterization of chiIO8, a ovel antifungal chitinase produced by Bacillus cereus IO8J. Appl. Microbiol.115358366201310.1111/jam.1224223647603Search in Google Scholar

Hartl L., Zach S., Seidl-Seiboth V.: Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl. Microbiol. Biotechnol. 93, 533–543 (2012)HartlL.ZachS.Seidl-SeibothV.Fungal chitinases: diversity, mechanistic properties and biotechnological potentialAppl. Microbiol. Biotechnol.93533543201210.1007/s00253-011-3723-3325743622134638Search in Google Scholar

Hayashi M., Saeki Y., Haga M., Harada K., Kouchi H., Umehara Y.: Rj (rj) genes involved in nitro gen-fixing root nodule formation in soybean. Breeding Sci. 61, 544–553 (2012)HayashiM.SaekiY.HagaM.HaradaK.KouchiH.UmeharaY.Rj (rj) genes involved in nitro gen-fixing root nodule formation in soybeanBreeding Sci.61544553201210.1270/jsbbs.61.544340678623136493Search in Google Scholar

Hernández-León R., Rojas-Solís D., Contreras-Pérez M., del Carmen Orozco-Mosqueda M., Macías-Rodríguez L.I., Reyes-de la Cruz H., Valencia-Cantero E., Santoyo G.: Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Control. 81, 83–92 (2015)Hernández-LeónR.Rojas-SolísD.Contreras-PérezM.del Carmen Orozco-MosquedaM.Macías-RodríguezL.I.Reyes-de la CruzH.Valencia-CanteroE.SantoyoG.Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strainsBiol. Control.818392201510.1016/j.biocontrol.2014.11.011Search in Google Scholar

Huang C.J., Guo S.H., Chung S.C., Lin Y.J., Chen C.Y. Analysis of the involvement of chitin-binding domain of ChiCW in antifungal activity, and engineering a novel chimeric chitinase with high enzyme and antifungal activities. J. Microbiol. Biotechnol. 19, 1169–1175 (2009)HuangC.J.GuoS.H.ChungS.C.LinY.J.ChenC.Y.Analysis of the involvement of chitin-binding domain of ChiCW in antifungal activity, and engineering a novel chimeric chitinase with high enzyme and antifungal activitiesJ. Microbiol. Biotechnol.19116911752009Search in Google Scholar

Iqbal M., Nazir F., Ali S., Asif M. A., Zafar Y., Iqbal J., Ali G.M.: Overexpression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol. Biotechnol. 50, 129–136 (2012)IqbalM.NazirF.AliS.AsifM. A.ZafarY.IqbalJ.AliG.M.Overexpression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spotMol. Biotechnol.50129136201210.1007/s12033-011-9426-221688039Search in Google Scholar

Karthik N., Binod P. and Pandey A. Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp. Bioresour. Technol. 188, 195–201 (2015)KarthikN.BinodP. and PandeyA.Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces spBioresour. Technol.188195201201510.1016/j.biortech.2015.03.00625824594Search in Google Scholar

Kawase T., Yokokawa S., Saito A., Fujii T., Nikaidou N., Miyashita K., Watanabe T.: Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci. Biotechnol. Biochem. 70, 988–998 (2006)KawaseT.YokokawaS.SaitoA.FujiiT.NikaidouN.MiyashitaK.WatanabeT.Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2)Biosci. Biotechnol. Biochem.70988998200610.1271/bbb.70.98816636468Search in Google Scholar

Khan A., Nasir I.A., Tabassum B., Aaliya K., Tariq M., Rao A.Q.: Expression studies of chitinase gene in transgenic potato against Alternaria solani. Plant. Cell. Tiss. Organ. Cult. 128, 563–576 (2017)KhanA.NasirI.A.TabassumB.AaliyaK.TariqM.RaoA.Q.Expression studies of chitinase gene in transgenic potato against Alternaria solaniPlant. Cell. Tiss. Organ. Cult.128563576201710.1007/s11240-016-1134-ySearch in Google Scholar

Kieffer P., Dommes J., Hoffmann L., Hausman J.F., Renaut J.: Quantative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8, 2514–2530 (2008)KiefferP.DommesJ.HoffmannL.HausmanJ.F.RenautJ.Quantative changes in protein expression of cadmium-exposed poplar plantsProteomics825142530200810.1002/pmic.20070111018563750Search in Google Scholar

Kirubakaran S.I., Sakthivel N. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expr Purif. 52, 159–166 (2007)KirubakaranS.I.SakthivelN.Cloning and overexpression of antifungal barley chitinase gene in Escherichia coliProtein Expr Purif.52159166200710.1016/j.pep.2006.08.01217029984Search in Google Scholar

Kishore G.K., Pande S. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett. Appl. Microbiol. 44, 98–105 (2007)KishoreG.K.PandeS.Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditionsLett. Appl. Microbiol.4498105200710.1111/j.1472-765X.2006.02022.x17209822Search in Google Scholar

Kisiel A., Jęckowska K., Kępczyńska E.: Rola chitynaz w rozwoju roślin. Post. Biol. Kom. 43, 283–287 (2016)KisielA.JęckowskaK.KępczyńskaE.Rola chitynaz w rozwoju roślinPost. Biol. Kom.432832872016Search in Google Scholar

Kisiel A., Kępczyńska E.: Chitynazy bakteryjne i ich wykorzystanie w biotechnologii. Post. Mikrobiol. 56 (3), 306–315 (2017)KisielA.KępczyńskaE.Chitynazy bakteryjne i ich wykorzystanie w biotechnologiiPost. Mikrobiol.5633063152017Search in Google Scholar

Kitajima S., Kamei K., Taketani S., Yamaguchi M., Kawai F., Komatsu A., Inukai Y.: Two chitinase-like proteins abundantly accumulated in latex of mulberry show insencticidal activity. BMC Biochem. DOI: 10.1186/1471-2091-11-6 (2010)KitajimaS.KameiK.TaketaniS.YamaguchiM.KawaiF.KomatsuA.InukaiY.Two chitinase-like proteins abundantly accumulated in latex of mulberry show insencticidal activityBMC Biochem.DOI:10.1186/1471-2091-11-62010282735920109180Open DOISearch in Google Scholar

Kezuka Y., Ohishi M., Itoh Y., Watanabe J., Mitsutomi M., Watanabe T., Nonaka T.: Structural studies of a two-domain chitinase from Streptomyces griseus HUT6037. J. Mol. Biol. 358, 472–484 (2006)KezukaY.OhishiM.ItohY.WatanabeJ.MitsutomiM.WatanabeT.NonakaT.Structural studies of a two-domain chitinase from Streptomyces griseus HUT6037J. Mol. Biol.358472484200610.1016/j.jmb.2006.02.01316516924Search in Google Scholar

Kopparapu N.K., Liu Z., Fei F., Yan Q., Jiang Z.: Purification and characterization of a chitinase (sAMC) with antifungal activity from seeds of Astragalus membranaceus. Proc. Biochem. 46, 1370–1374 (2011)KopparapuN.K.LiuZ.FeiF.YanQ.JiangZ.Purification and characterization of a chitinase (sAMC) with antifungal activity from seeds of Astragalus membranaceusProc. Biochem.4613701374201110.1016/j.procbio.2011.02.015Search in Google Scholar

Kumar K., Ran R.M.: Chitinase production by rhizobacterial strains isolated from root nodules of Vigna trilobata cultivars, IJASR 6, 85–92 (2016)KumarK.RanR.M.Chitinase production by rhizobacterial strains isolated from root nodules of Vigna trilobata cultivarsIJASR685922016Search in Google Scholar

Landim P.G.C., Grangeiro T.B. i wsp.: Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolyticaction. Biochimie 135, 89–103 (2017)LandimP.G.C.GrangeiroT.B.i wspProduction in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolyticactionBiochimie13589103201710.1016/j.biochi.2017.01.01428153694Search in Google Scholar

Larsen T., Petersen B.O., Storgaard B.G., Duus J.O., Palcic M.M., Leisner J.J.: Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate. Glycobiology 21, 426–436 (2011)LarsenT.PetersenB.O.StorgaardB.G.DuusJ.O.PalcicM.M.LeisnerJ.J.Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugateGlycobiology21426436201110.1093/glycob/cwq17421062783Search in Google Scholar

Li H.Y., Yang G.D., Shu H.R., Yang Y.T., Ye B.X., Nishida I., Zheng C.C.: Colonization by the Arbuscular Mycorrhizal Fungus Glomus versiforme Induces a Defense Response Against the Root-knot Nematode Meloidogyne incognita in the Grapevine (Vitis amurensis Rupr.), Which Includes Transcriptional Activation of the Class III Chitinase Gene VCH3. Plant Cell Physiol. 47, 154–163 (2006)LiH.Y.YangG.D.ShuH.R.YangY.T.YeB.X.NishidaI.ZhengC.C.Colonization by the Arbuscular Mycorrhizal Fungus Glomus versiforme Induces a Defense Response Against the Root-knot Nematode Meloidogyne incognita in the Grapevine (Vitis amurensis Rupr.), Which Includes Transcriptional Activation of the Class III Chitinase Gene VCH3Plant Cell Physiol.47154163200610.1093/pcp/pci23116326755Search in Google Scholar

Li J.G., Jiang Z.Q., Xu L.P., Sun F.F., Guo J.H. Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. BioControl 53, 931–944 (2008)LiJ.G.JiangZ.Q.XuL.P.SunF.F.GuoJ.H.Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplantBioControl53931944200810.1007/s10526-007-9144-7Search in Google Scholar

Lim H.-S., Kim Y.-S., Kim S.-D., Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microbiol. 57, 510–516 (1991)LimH.-S.KimY.-S.KimS.-D.Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rotAppl. Environ. Microbiol.57510516199110.1128/aem.57.2.510-516.199118274116348417Search in Google Scholar

Liu D., Cai J., Xie Ch.-Ch., Liu Ch., Chen Y.-H.: Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis spp. colmeri, and its biocontrol potential. Enzyme Microb. Technol. 46, 252–256 (2010)LiuD.CaiJ.XieCh.-Ch.LiuCh.ChenY.-H.Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis spp. colmeri, and its biocontrol potentialEnzyme Microb. Technol.46252256201010.1016/j.enzmictec.2009.10.007Search in Google Scholar

Lugtenberg B., Kamilova F.: Plant-Growth-Promoting-Rhizobacteria. Ann. Rev. Microbiol. 63, 541–556 (2009)LugtenbergB.KamilovaF.Plant-Growth-Promoting-RhizobacteriaAnn. Rev. Microbiol.63541556200910.1146/annurev.micro.62.081307.16291819575558Search in Google Scholar

Major I.T., Constabel C.P.: Molecular analysis of poplar defense against herbivory. Comparison of wound – and insect elicitor-induced gene expression. New Phytol. 172, 617–635 (2006)MajorI.T.ConstabelC.P.Molecular analysis of poplar defense against herbivory. Comparison of wound – and insect elicitor-induced gene expressionNew Phytol.172617635200610.1111/j.1469-8137.2006.01877.x17096789Search in Google Scholar

Marzec M., Szarejko I., Melzer M.: Arabinogalactan proteins are involved in root hair development in barley. J Exp. Bot. doi: 10.1093/jxb/eru47 (2014)MarzecM.SzarejkoI.MelzerM.Arabinogalactan proteins are involved in root hair development in barleyJ Exp. Bot.doi:10.1093/jxb/eru472014Open DOISearch in Google Scholar

Massey F.P., Hartley S.E.: Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J. Anim. Ecol. 78, 281–291 (2009)MasseyF.P.HartleyS.E.Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivoresJ. Anim. Ecol.78281291200910.1111/j.1365-2656.2008.01472.x18771503Search in Google Scholar

Matroodi S. Motallebi M. Designing a new chitinase with more chitin binding and antifungal activity. World J. Microbiol. Biotechnol. 29, 1517–1523 (2013)MatroodiS.MotallebiM.Designing a new chitinase with more chitin binding and antifungal activityWorld J. Microbiol. Biotechnol.2915171523201310.1007/s11274-013-1318-023515962Search in Google Scholar

Menna P., Hungria M., Barcellos F.G., Bangel E.V., Hess P.N., Martinez-Romero E.: Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst. Appl. Microbiol. 29, 315–332 (2006)MennaP.HungriaM.BarcellosF.G.BangelE.V.HessP.N.Martinez-RomeroE.Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculantsSyst. Appl. Microbiol.29315332200610.1016/j.syapm.2005.12.00216442259Search in Google Scholar

Mészáros P., Rybanský L., Hauptvogel P., Kuna R., Libantová J., Moravčíková J., Piršelová B., Tirpáková A., Matušíková I. Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic. Mol. Biol. Rep. 40, 2127–2138 (2013)MészárosP.RybanskýL.HauptvogelP.KunaR.LibantováJ.MoravčíkováJ.PiršelováB.TirpákováA.MatušíkováI.Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenicMol. Biol. Rep.4021272138201310.1007/s11033-012-2271-y23192611Search in Google Scholar

Mészáros P., Rybanský L., Spieß N., Socha P., Kuna R., Libantová J., Moravčíková J., Piršelová B., Hauptvogel P., Matušíková I. Plant chitinase responses to different metal-type stresses reveal specificity. Plant Cell Rep. 33, 1789–1799 (2014)MészárosP.RybanskýL.SpießN.SochaP.KunaR.LibantováJ.MoravčíkováJ.PiršelováB.HauptvogelP.MatušíkováI.Plant chitinase responses to different metal-type stresses reveal specificityPlant Cell Rep.3317891799201410.1007/s00299-014-1657-925023875Search in Google Scholar

Mizuno R., Fukamizo T., Sugiyama S., Nishizawa Y., Kezuka Y., Nonaka T., Suzuki K., Watanabe T.: Role of the loop structure of the catalytic domain in rice class I chitinase. J. Biochem. 143, 487–495 (2008)MizunoR.FukamizoT.SugiyamaS.NishizawaY.KezukaY.NonakaT.SuzukiK.WatanabeT.Role of the loop structure of the catalytic domain in rice class I chitinaseJ. Biochem.143487495200810.1093/jb/mvn00418211919Search in Google Scholar

Moebius N., Üzüm Z., Dijksterhuis J.: Active invasion of bacteria into living fungal cells. Elife 3, 10.7554/eLife.03007 (2014)MoebiusN.ÜzümZ.DijksterhuisJ.Active invasion of bacteria into living fungal cellsElife310.7554/eLife.030072014416600225182414Open DOISearch in Google Scholar

Nagpure A., Gupta R.K.: Purification and characterization of an extracellular chitinase from antagonistic Streptomyces violaceusniger. J. Basic Microbiol. 52, 1–11 (2013)NagpureA.GuptaR.K.Purification and characterization of an extracellular chitinase from antagonistic Streptomyces violaceusnigerJ. Basic Microbiol.521112013Search in Google Scholar

Nawani N.N., Kapadnis B.P.: Production dynamics and characterization of chitinolytic system of Streptomyces sp. NK 1057, a well equipped chitin degrader. World J. Microbiol. Biotechnol. 20, 487–494 (2004)NawaniN.N.KapadnisB.P.Production dynamics and characterization of chitinolytic system of Streptomyces sp. NK 1057, a well equipped chitin degraderWorld J. Microbiol. Biotechnol.20487494200410.1023/B:WIBI.0000040400.68310.7cSearch in Google Scholar

Neeraja C., Anil K. Podile A.R. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit. Rev. Biotechnol. 30, 231–241 (2010)NeerajaC.AnilK.PodileA.R.Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plantsCrit. Rev. Biotechnol.30231241201010.3109/07388551.2010.48725820572789Search in Google Scholar

Negi Y. K., Prabha D., Garg S. K., Kumar J. Biological control of ragi blast disease by chitinase producing fluorescent Pseudomonas isolates. Org. Agric. 7, 63–71 (2015)NegiY. K.PrabhaD.GargS. K.KumarJ.Biological control of ragi blast disease by chitinase producing fluorescent Pseudomonas isolatesOrg. Agric.76371201510.1007/s13165-015-0142-2Search in Google Scholar

Ohno M., Togashi Y., Tsuda K., Okawa K., Kamaya M., Sakaguchi M., Sugahara Y., Oyama F.: Quantification of Chitinase mRNA Levels in Human and Mouse Tissues by Real-Time PCR: Species-Specific Expression of Acidic Mammalian Chitinase in Stomach Tissues. PLoS One, 8, e67399 (2013)OhnoM.TogashiY.TsudaK.OkawaK.KamayaM.SakaguchiM.SugaharaY.OyamaF.Quantification of Chitinase mRNA Levels in Human and Mouse Tissues by Real-Time PCR: Species-Specific Expression of Acidic Mammalian Chitinase in Stomach TissuesPLoS One8e67399201310.1371/journal.pone.0067399369489723826286Search in Google Scholar

Ohnuma T., Numata T., Osawa T., Mizuhara M., Lampela O., Juffer A.H., Skriver K., Fukamizo T.. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta 234, 123–137 (2011)OhnumaT.NumataT.OsawaT.MizuharaM.LampelaO.JufferA.H.SkriverK.FukamizoT.A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysisPlanta234123137201110.1007/s00425-011-1390-321390509Search in Google Scholar

Olanrewaju O.S., Glick B.R., Babalola O.O.: Mechanisms of actions of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33, 197 (2017)OlanrewajuO.S.GlickB.R.BabalolaO.O.Mechanisms of actions of plant growth promoting bacteriaWorld J. Microbiol. Biotechnol.33197201710.1007/s11274-017-2364-9568627028986676Search in Google Scholar

Oldroyd G.E., Downie J.A.: Coordinating nodule morphogenesis with rhizobial infection in legumes. Ann. Rev. Plant Biol. 59, 519–546 (2008)OldroydG.E.DownieJ.A.Coordinating nodule morphogenesis with rhizobial infection in legumesAnn. Rev. Plant Biol.59519546200810.1146/annurev.arplant.59.032607.09283918444906Search in Google Scholar

Ortiz-Castro R., Contreras-Cornejo H.A., Macias-Rodriguez L., López-Bucio J.: The role of microbial signals in plant growth and development. Plant Signal. Behav. 4, 701–712 (2009)Ortiz-CastroR.Contreras-CornejoH.A.Macias-RodriguezL.López-BucioJ.The role of microbial signals in plant growth and developmentPlant Signal. Behav.4701712200910.4161/psb.4.8.9047280138019820333Search in Google Scholar

Patel A.K., Singh V.K., Yadav R.P., Moir A.J.G., Jagannadham M.V.: Purification and characterization of a new chitinase from latex of Ipomoea carnea. Proc. Biochem. 45, 675–681 (2010)PatelA.K.SinghV.K.YadavR.P.MoirA.J.G.JagannadhamM.V.Purification and characterization of a new chitinase from latex of Ipomoea carneaProc. Biochem.45675681201010.1016/j.procbio.2009.12.016Search in Google Scholar

Prasad K., Bhatnagar-Mathur P., Waliyar F., Sharma K.K.: Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J. Plant Biochem. Biotechnol. 22, 222–233 (2013)PrasadK.Bhatnagar-MathurP.WaliyarF.SharmaK.K.Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogensJ. Plant Biochem. Biotechnol.22222233201310.1007/s13562-012-0155-9Search in Google Scholar

Rostami A., Hinc K., Goshadrou F., Shali A., Bayat M., Hassanzadech M., Amanlou M., Eslahi N., Ahmadian G.: Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic. Biochem. Physiol. 140, 17–23 (2017)RostamiA.HincK.GoshadrouF.ShaliA.BayatM.HassanzadechM.AmanlouM.EslahiN.AhmadianG.Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticidePestic. Biochem. Physiol.1401723201710.1016/j.pestbp.2017.05.00828755689Search in Google Scholar

Salazar S., Castagnaro A., Arias M., Chalfoun N., Tonello U., Díaz Ricci J.: Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. Eur. J. Plant Pathol. 117, 109–122 (2007)SalazarS.CastagnaroA.AriasM.ChalfounN.TonelloU.Díaz RicciJ.Induction of a defense response in strawberry mediated by an avirulent strain of ColletotrichumEur. J. Plant Pathol.117109122200710.1007/s10658-006-9075-7Search in Google Scholar

Salzer P., Boller T.: Elicitor-induced reactions in mycorrhizae and their suppression (w) Current advances in mycorrhizae research, red. G.K. Podila, D.D. Douds, Minnesota, USA, The American Phytopathological Society, s. 1–10SalzerP.BollerT.Elicitor-induced reactions in mycorrhizae and their suppression (w) Current advances in mycorrhizae researchred.PodilaG.K.DoudsD.D.Minnesota, USAThe American Phytopathological Societys. 110Search in Google Scholar

Salzer P., Bonanomi A., Beyer K., Vögeli-Lange R., Aeschbacher R.A., Lange J., Wiemken A., Kim D., Cook D.R., Boller T.: Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. MPMI 13, 763–777 (2000)SalzerP.BonanomiA.BeyerK.Vögeli-LangeR.AeschbacherR.A.LangeJ.WiemkenA.KimD.CookD.R.BollerT.Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infectionMPMI13763777200010.1094/MPMI.2000.13.7.76310875337Search in Google Scholar

Salzer P., Feddermann N., Wiemken A., Boller T., Staehelin C.: Sinorhizobium meliloti – induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparision between symbiosis-specyfic class V and defence related class IV chitinases. Planta 219, 626–638 (2004)SalzerP.FeddermannN.WiemkenA.BollerT.StaehelinC.Sinorhizobium meliloti – induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparision between symbiosis-specyfic class V and defence related class IV chitinasesPlanta219626638200410.1007/s00425-004-1268-815107993Search in Google Scholar

Santos P., Fortunato A., Ribeiro A., Pawlowski K.: Chitinases in root nodules. Plant Biotechnol. 25, 299–307 (2008)SantosP.FortunatoA.RibeiroA.PawlowskiK.Chitinases in root nodulesPlant Biotechnol.25299307200810.5511/plantbiotechnology.25.299Search in Google Scholar

Scherlach K., Busch B., Lackner G., Paszkowski U., Hertweck C.: Symbiotic cooperation in the biosynthesis of a phytotoxin. Angewandte Chemie 51, 9615–9618 (2012)ScherlachK.BuschB.LacknerG.PaszkowskiU.HertweckC.Symbiotic cooperation in the biosynthesis of a phytotoxinAngewandte Chemie5196159618201210.1002/anie.20120454022915379Search in Google Scholar

Sekar J., Raju K., Duraisamy P., Vaiyapuri P.R. Potential of finger millet indigenous rhizobacterium Pseudomonas sp. MSSRFD41 in blast disease management—growth promotion and compatibility with the resident rhizomicrobiome. Front Microbiol. 9, 1029 (2018)SekarJ.RajuK.DuraisamyP.VaiyapuriP.R.Potential of finger millet indigenous rhizobacterium Pseudomonas sp. MSSRFD41 in blast disease management—growth promotion and compatibility with the resident rhizomicrobiomeFront Microbiol.91029201810.3389/fmicb.2018.01029597422029875748Search in Google Scholar

Sharma N., Sharma K.P., Gaur R.K, Gupta V.K.: Role of chitinase in plant defense. Asian J. Biochem. 6, 29–37 (2011)SharmaN.SharmaK.P.GaurR.KGuptaV.K.Role of chitinase in plant defenseAsian J. Biochem.62937201110.3923/ajb.2011.29.37Search in Google Scholar

Shoresh M., Harman G.E.: Differential expression of maize chitinases in the presence or absence of Trichoderma harzianum strain T22 and indications of a novel exoendo-heterodimeric chitinase activity. BMC Plant Biol. 10, 136 (2010)ShoreshM.HarmanG.E.Differential expression of maize chitinases in the presence or absence of Trichoderma harzianum strain T22 and indications of a novel exoendo-heterodimeric chitinase activityBMC Plant Biol.10136201010.1186/1471-2229-10-136301780620594307Search in Google Scholar

Showalter A.M.: Arabinogalactan-proteins: structure, expression and function. Cell Mol. Life Sci. 58, 1399–1417 (2001)ShowalterA.M.Arabinogalactan-proteins: structure, expression and functionCell Mol. Life Sci.5813991417200110.1007/PL0000078411693522Search in Google Scholar

Singh H.R., Deka M., Das S.: Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum). Funct. Integr. Genomics, 15, 461–80 (2015)SinghH.R.DekaM.DasS.Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum)Funct. Integr. Genomics1546180201510.1007/s10142-015-0436-125772466Search in Google Scholar

Sinha M., Singh R.P, Kushwaa G.S., Iqbal N., Singh A., Kaushik S., Kaur P., Sharma S., Singh T.P.: Current overview of allergens of plant pathogenesis related protein families. Sci. World J. doi.org/10.1155/2014/543195 (2014)SinhaM.SinghR.PKushwaaG.S.IqbalN.SinghA.KaushikS.KaurP.SharmaS.SinghT.P.Current overview of allergens of plant pathogenesis related protein familiesSci. World J.doi.org/10.1155/2014/5431952014394780424696647Open DOISearch in Google Scholar

Sridevi M., Mallaiah K.V.: Factors effecting chitinase activity of Rhizobium sp. from Sesbania sesban. Biologia 63, 307–312 (2008)SrideviM.MallaiahK.V.Factors effecting chitinase activity of Rhizobium sp. from Sesbania sesbanBiologia63307312200810.2478/s11756-008-0070-7Search in Google Scholar

Someya N., Nakajima M., Hirayae K., Hibi T., Akutsu K.: Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by the biocontrol bacterium Serratia marcescens strain B2 against the gray mold pathogen, Botrytis cinerea. J. Gen. Plant. Pathol. 67, 312–317 (2001)SomeyaN.NakajimaM.HirayaeK.HibiT.AkutsuK.Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by the biocontrol bacterium Serratia marcescens strain B2 against the gray mold pathogen, Botrytis cinereaJ. Gen. Plant. Pathol.67312317200110.1007/PL00013038Search in Google Scholar

Su Y., Xu L., Fu Z., Yang Y., Guo J., Wang S., Que Y.: ScChi, Encoding an Acidic Class III Chitinase of Sugarcane, Confers Positive Responses to Biotic and Abiotic Stresses in Sugarcane. Int. J. Mol. Sci. 15, 2738–2760 (2014)SuY.XuL.FuZ.YangY.GuoJ.WangS.QueY.ScChi, Encoding an Acidic Class III Chitinase of Sugarcane, Confers Positive Responses to Biotic and Abiotic Stresses in SugarcaneInt. J. Mol. Sci.1527382760201410.3390/ijms15022738395887924552874Search in Google Scholar

Suzuki K., Sugawara N., Suzuki M., Uchiyama T., Katouno F., Nikaidou N., Watanabe T.: Chitinases, A, B and C1 of Serratia marcescens 2170 produced by recombinant E. coli: enzymatic properties and synergism on chitin degradation. Biosci. Biotechnol. Biochem. 66, 1075–1083 (2002)SuzukiK.SugawaraN.SuzukiM.UchiyamaT.KatounoF.NikaidouN.WatanabeT.Chitinases, A, B and C1 of Serratia marcescens 2170 produced by recombinant E. coli: enzymatic properties and synergism on chitin degradationBiosci. Biotechnol. Biochem.6610751083200210.1271/bbb.66.107512092818Search in Google Scholar

Tian Y., Liu W., Cai J., Zhang L.Y., Wong K.B., Feddermann N., Boller T., Xie Z.P, Staehelin C.: The nodulation factor hydrolase of Medicago truncatula: characterization of an enzyme specifically cleaving rhizobial nodulation signals. Plant Physiol. 163, 1179–1190 (2013)TianY.LiuW.CaiJ.ZhangL.Y.WongK.B.FeddermannN.BollerT.XieZ.PStaehelinC.The nodulation factor hydrolase of Medicago truncatula: characterization of an enzyme specifically cleaving rhizobial nodulation signalsPlant Physiol.16311791190201310.1104/pp.113.223966381364224082029Search in Google Scholar

Toufiq N., Tabassum B., Bhatti M.U., Khan A., Tariq M., Shahid N., Nasir I.A., Husnain T.: Improved antifungal activity of barley derived chitinase I gene that overexpress a 32kDa recombinant chitinase in Escherichia coli host. Braz. J. Microbiol. 49, 414–421 (2018)ToufiqN.TabassumB.BhattiM.U.KhanA.TariqM.ShahidN.NasirI.A.HusnainT.Improved antifungal activity of barley derived chitinase I gene that overexpress a 32kDa recombinant chitinase in Escherichia coli hostBraz. J. Microbiol.49414421201810.1016/j.bjm.2017.05.007591383229146152Search in Google Scholar

Tsujibo H., Kubota T., Yamamoto M., Miyamoto K., Inamor Y.: Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131. Appl Environ Microbiol. 69, 894–900 (2003)TsujiboH.KubotaT.YamamotoM.MiyamotoK.InamorY.Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131Appl Environ Microbiol.69894900200310.1128/AEM.69.2.894-900.200314361912571009Search in Google Scholar

Vega K., Kalkum M.: Chitin, chitinase responses, and invasive fungal infections. Int. J. Microbiol. 2012, doi: 10.1155/2012/920459 (2012)VegaK.KalkumM.Chitin, chitinase responses, and invasive fungal infectionsInt. J. Microbiol.2012doi:10.1155/2012/9204592012323645622187561Open DOISearch in Google Scholar

Veliz E.A., Martínez-Hidalgo P., Hirsch A.M.: Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol. 3, 689–705 (2017)VelizE.A.Martínez-HidalgoP.HirschA.M.Chitinase-producing bacteria and their role in biocontrolAIMS Microbiol.3689705201710.3934/microbiol.2017.3.689660499631294182Search in Google Scholar

Wan J., Zhang X-C., Neece D., Ramonell K.M., Clough S., Kim S-Y., Stacey M.G., Stacey G.: A LysM receptor-like kinase plays critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20, 471–481 (2008)WanJ.ZhangX-C.NeeceD.RamonellK.M.CloughS.KimS-Y.StaceyM.G.StaceyG.A LysM receptor-like kinase plays critical role in chitin signaling and fungal resistance in ArabidopsisPlant Cell20471481200810.1105/tpc.107.056754227643518263776Search in Google Scholar

Wang S., Shao B., Fu H., Rao P.: Isolation of a thermostable legume chitinase and study on the antifungal activity. Appl. Microbiol. Biotechnol. 85, 313–321 (2009)WangS.ShaoB.FuH.RaoP.Isolation of a thermostable legume chitinase and study on the antifungal activityAppl. Microbiol. Biotechnol.85313321200910.1007/s00253-009-2074-919547968Search in Google Scholar

Wani P.A., Khan M.S., Zaidi A.: Toxic effects of heavy metals on germination and physiological processes of plants. (w) Toxicity of Metals to Legumes and Bioremediation red. Zaidi A., Wani P.A., Khan M.S. Springer-Verlag Wien, 2012, s. 45–66.WaniP.A.KhanM.S.ZaidiA.Toxic effects of heavy metals on germination and physiological processes of plants. (w) Toxicity of Metals to Legumes and Bioremediationred.ZaidiA.WaniP.A.KhanM.S.Springer-Verlag Wien2012s. 4566Open DOISearch in Google Scholar

Winfield M.O., Lu C., Wilson I.D., Coghill J.A, Edwards K.J.: Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol. J. 8, 749–771 (2010)WinfieldM.O.LuC.WilsonI.D.CoghillJ.AEdwardsK.J.Plant responses to cold: transcriptome analysis of wheatPlant Biotechnol. J.8749771201010.1111/j.1467-7652.2010.00536.x20561247Search in Google Scholar

Xu J., Xu X., Tian L., Wang G., Zhang X., Wang X., Guo W.: Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Sci. Rep. 6, 29022; doi: 10.1038/srep29022 (2016)XuJ.XuX.TianL.WangG.ZhangX.WangX.GuoW.Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cottonSci. Rep.629022doi:10.1038/srep290222016492627327354165Open DOISearch in Google Scholar

Yeh S., Lajoie G. i wsp.: Chitinase genes responsie to cold encode antifreeze proteins in winter cereals. Plant Physiol. 124, 1251–1263 (2000)YehS.LajoieG.i wspChitinase genes responsie to cold encode antifreeze proteins in winter cerealsPlant Physiol.12412511263200010.1104/pp.124.3.12515922311080301Search in Google Scholar

Zarandi H.S., Bagheri A., Baghizadeh A., Moshtaghi N.: Quantitative analysis of chitinase gene expression in chickpea. Russ. J. Plant Physiol. 58, 681–685 (2011)ZarandiH.S.BagheriA.BaghizadehA.MoshtaghiN.Quantitative analysis of chitinase gene expression in chickpeaRuss. J. Plant Physiol.58681685201110.1134/S1021443711040273Search in Google Scholar

Zarei M., Aminzadeh S., Zolgharnein H., Safahieh A., Daliri M., Noghabi K.A., Motallebi A. Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz. J. Microbiol. 42, 1017–1029 (2011)ZareiM.AminzadehS.ZolgharneinH.SafahiehA.DaliriM.NoghabiK.A.MotallebiA.Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4ABraz. J. Microbiol.4210171029201110.1590/S1517-83822011000300022Search in Google Scholar

Zhang J., Zhang X., Arakane Y., Muthukrishnan S., Kramer K.J., Ma E., Zhu K.Y.: Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS One e0019899 (2011a)ZhangJ.ZhangX.ArakaneY.MuthukrishnanS.KramerK.J.MaE.ZhuK.Y.Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae)PLoS Onee00198992011a10.1371/journal.pone.0019899309721021611131Search in Google Scholar

Zhang L-Y., Cai J., Li R-J., Liu W., Wagner C., Wong K-B., Xie Z-P., Staehelin C.: A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activity. Open Biol. 6, 160061 (2016)ZhangL-Y.CaiJ.LiR-J.LiuW.WagnerC.WongK-B.XieZ-P.StaehelinC.A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activityOpen Biol.6160061201610.1098/rsob.160061496782327383628Search in Google Scholar

Zhang S-H., Wei Y., Liu J-L., Yu H-M., Yin J-H., Pan H-Y., Baldwin T.C.: An apoplastic chitinase CpCHT1 isolated from the corolla of wintersweet exhibits both antifreeze and antifungal activities. Biol. Plant. 55, 141–148 (2011b)ZhangS-H.WeiY.LiuJ-L.YuH-M.YinJ-H.PanH-Y.BaldwinT.C.An apoplastic chitinase CpCHT1 isolated from the corolla of wintersweet exhibits both antifreeze and antifungal activitiesBiol. Plant.551411482011b10.1007/s10535-011-0019-5Search in Google Scholar

Zhao M., Ma Y., Pan Y.H., Zhang C.H., Yuan W.X.: A hevein-like protein and a class I chitinase with antifungal activity from leaves of the paper mulberry. Biomed Chromatogr. 25, 908–912 (2011)ZhaoM.MaY.PanY.H.ZhangC.H.YuanW.X.A hevein-like protein and a class I chitinase with antifungal activity from leaves of the paper mulberryBiomed Chromatogr.25908912201110.1002/bmc.154321268047Search in Google Scholar

Zubek S., Błaszkowski J., Mleczko P.: Arbuscular mycorrhizal and dark septateendophyte associations of medicinal plants. Acta. Soc. Bot. Pol. 80, 285–292 (2011)ZubekS.BłaszkowskiJ.MleczkoP.Arbuscular mycorrhizal and dark septateendophyte associations of medicinal plantsActa. Soc. Bot. Pol.80285292201110.5586/asbp.2011.033Search in Google Scholar

eISSN:
2545-3149
Lingue:
Inglese, Polacco
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology