1. bookVolume 57 (2018): Edizione 1 (January 2018)
Dettagli della rivista
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Inglese, Polacco
Accesso libero

The Hfq protein – a novel view on the well-known riboregulator

Pubblicato online: 23 May 2019
Volume & Edizione: Volume 57 (2018) - Edizione 1 (January 2018)
Pagine: 12 - 21
Ricevuto: 01 Aug 2017
Accettato: 01 Nov 2017
Dettagli della rivista
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Inglese, Polacco

Aiba H.: Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol. 10, 134–139 (2007)Search in Google Scholar

Arluison V., Folichon M., Marco S., Derreumaux P., Pellegrini O., Seguin J., Hajnsdorf E., Regnier P.: The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. Eur. J. Biochem. 271, 1258–1265 (2004)Search in Google Scholar

Arluison V., Mura C., Guzmán M.R., Liquier J., Pellegrini O., Gingery M., Régnier P., Marco S.: Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins. J. Mol. Biol. 356, 86–96 (2006)10.1016/j.jmb.2005.11.010Search in Google Scholar

Azam T.A., Ishihama A.: Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274, 33105–33113 (1999)Search in Google Scholar

Bardill J.P., Zhao X., Hammer B.K.: The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions. Mol. Microbiol. 80, 1381–1394 (2011)Search in Google Scholar

Bi E.F., Lutkenhaus J.: FtsZ ring structure associated with division in Escherichia coli. Nature, 354, 161–4 (1991)10.1038/354161a0Search in Google Scholar

Brennan R.G., Link T.M.: Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 10, 125–133 (2007)Search in Google Scholar

Carmichael G.G., Weber K., Niveleau A., Wahba A.J.: The host factor required for RNA phage Q beta RNA replication in vitro. Intracellular location, quantitation, and purification by polyadenylate-cellulose chromatography. J. Biol. Chem. 250, 3607–3612 (1975)Search in Google Scholar

Cech G.M., Pakuła B., Kamrowska D., Wegrzyn G., Arluison V., Szalewska-Pałasz A.: Hfq protein deficiency in Escherichia coliaffects ColE1-like but not lambda plasmid DNA replication. Plasmid, 73, 10–15 (2014)10.1016/j.plasmid.2014.04.005Search in Google Scholar

Chao Y., Vogel J.: The role of Hfq in bacterial pathogens.: Curr. Opin. Microbiol. 13, 24–33 (2010)Search in Google Scholar

Dame R.T., Noom M.C., Wuite G.J.L.: Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature, 444, 387–390 (2006)10.1038/nature05283Search in Google Scholar

de Haseth P. L., Uhlenbeck O. C.: Interaction of Escherichia coli host factor protein with oligoriboadenylates. Biochemistry, 19, 6138–6146 (1980)10.1021/bi00567a029Search in Google Scholar

Diestra E., Cayrol B., Arluison V., Risco C.: Cellular electron microscopy imaging reveals the localization of the hfq protein close to the bacterial membrane. Plos One, 4, (2009)10.1371/journal.pone.0008301Search in Google Scholar

Fortas E., Piccirilli F., Malabirade A., Militello V., Trépout S., Marco S., Taghbalout A., Arluison V.: New insight into the structure and function of Hfq C-terminus. Biosci. Rep. 35, 1–9 (2015)Search in Google Scholar

Franze de Fernandez M.T., Hayward W.S., August J.T.: Bacterial proteins required for replication of phage Q ribonucleic acid. Pruification and properties of host factor I, a ribonucleic acid-binding protein. J. Biol. Chem. 247, 824–831 (1972)Search in Google Scholar

Geinguenaud F., Calandrini V., Teixeira J., Mayer C., Liquier J., Lavelle C., Arluison V.: Conformational transition of DNA bound to Hfq probed by infrared spectroscopy. Phys. Chem. 13, 1222–1229 (2011)Search in Google Scholar

Guillier M., Gottesman S., Storz G.: Modulating the outer membrane with small RNAs. Gene. Dev. 20, 2338–2348 (2006)Search in Google Scholar

Guisbert E., Rhodius V.A., Ahuja N., Witkin E., Gross C.A.: Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli. J. Bacteriol. 189, 1963–1973 (2007)10.1128/JB.01243-06Search in Google Scholar

Hermann H., Fabrizio P., Raker V.A., Foulaki K., Hornig H., Brahms H., Luhrmann R.: snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J. 14, 2076–2088 (1995)10.1002/j.1460-2075.1995.tb07199.xSearch in Google Scholar

Holmqvist E., Wright P. R., Li L., Bischler T., Barquist L., Reinhardt R., Vogel J.: Global RNA recognition patterns of posttranscriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 35(9), 991–1011. (2016)10.15252/embj.201593360Search in Google Scholar

Hori K., Yanazaki Y.: Nucleotide sequence specific interaction of host factor I with bacteriophage Q beta RNA. FEBS Lett. 43, 20–22 (1974)10.1016/0014-5793(74)81095-1Search in Google Scholar

Ikeda Y., Yagi M., Morita T., Aiba H.: Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol. Microbiol. 79, 419–432 (2011)10.1111/j.1365-2958.2010.07454.x21219461Search in Google Scholar

Jiang K., Zhang C., Guttula D., Liu F., van Kan J. A., Lavelle C., Kubiak K., Malabirade A., Lapp A., Arluison V., van der Maarel J.R.C.: Effects of Hfq on the conformation and compaction of DNA. Nucleic Acids Res. 43, 4332–4341 (2015)10.1093/nar/gkv268441717525824948Search in Google Scholar

Kajitani M., Kato A., Wada A., Inokuchi Y., Ishihama A.: Regulation of the Escherichia coli hfq gene encoding the host factor for phage Q beta. J. Bacteriol. 176, 531–534 (1994)10.1128/jb.176.2.531-534.19942050818288550Search in Google Scholar

Link T.M., Valentin-Hansen P., Brennan R.G.: Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc. Natl. Acad. Sci. USA, 106, 19292–19297 (2009)10.1073/pnas.0908744106277320019889981Search in Google Scholar

Lu F., Taghbalout A.: Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II. J. Biol. Chem. 288, 7241–7251 (2013)Search in Google Scholar

Melamed S., Peer A., Faigenbaum-Romm R., Gatt Y.E., Reiss N., Bar A., Margalit, H.: Global Mapping of Small RNA-Target Interactions in Bacteria. Molecular Cell, 63(5), 884–897 (2016)10.1016/j.molcel.2016.07.026514581227588604Search in Google Scholar

Mohanty B.K., Maples V.F., Kushner S.R.: The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol. Microbiol. 54, 905–920 (2004)Search in Google Scholar

Moll I., Afonyushkin T., Vytvytska O., Kaberdin V. R., Blasi U.: Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA, 9, 1308–1314 (2003)10.1261/rna.5850703128705214561880Search in Google Scholar

Muffler A., Fischer D., Hengge-Aronis R.: The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev. 10, 1143–1151 (1996)10.1101/gad.10.9.11438654929Search in Google Scholar

Mura C., Randolph P.S., Patterson J., Cozen A.E.: Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol. 10, 636–651 (2013)10.4161/rna.24538371037123579284Search in Google Scholar

Ohniwa R.L., Muchaku H., Saito S., Wada C., Morikawa K.: Atomic force microscopy analysis of the role of major DNA-binding proteins in organization of the nucleoid in Escherichia coli. Plos One, 8, e72954 (2013)10.1371/journal.pone.0072954374120123951337Search in Google Scholar

Olejniczak M.: Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry50, 4427–4440 (2011)10.1021/bi102043f21510661Search in Google Scholar

Papenfort K., Vogel J.: Regulatory RNA in bacterial pathogens.: Cell Host Microbe, 8, 116–127 (2010)10.1016/j.chom.2010.06.00820638647Search in Google Scholar

Paull T.T., Haykinson M.J., Johnson R.C.: The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 7, 1521–1534 (1993)10.1101/gad.7.8.15218339930Search in Google Scholar

Ramos C.G., Sousa S.A., Grilo A.M., Feliciano J.R., Leitao J.H.: The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J. Bacteriol. 193, 1515–1526 (2011)10.1128/JB.01375-10306766221278292Search in Google Scholar

Rice J.B., Vanderpool C.K.: The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res. 39, 3806–3819 (2011)10.1093/nar/gkq1219308944521245045Search in Google Scholar

Ross J.A., Ellis M.J., Hossain S., Haniford D.B.: Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system. RNA, 19, 670–684 (2013)10.1261/rna.037747.112367728223510801Search in Google Scholar

Ross J.A., Trussler R.S., Black M.D., McLellan C.R., Haniford D.B.: Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS. Mob. DNA, 5, 27 (2014)10.1186/s13100-014-0027-z426535225506402Search in Google Scholar

Santiago-Frangos A., Jeliazkov J.R., Gray J.J., Woodson S.A.: Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife, 6, e27049 (2017)10.7554/eLife.27049560685028826489Search in Google Scholar

Sauer E., Schmidt S., Weichenrieder O.: Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc. Natl. Acad. Sci. USA, 109, 9396–9401 (2012)10.1073/pnas.1202521109338610422645344Search in Google Scholar

Schu D.J., Zhang A., Gottesman S., Storz G.: Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J. 34(20), 2557–2573 (2015)10.15252/embj.201591569460918626373314Search in Google Scholar

Senear A.W., Steitz J.A.: Site-specific interaction of Q beta host factor and ribosomal protein S1 with Q beta and R17 bacteriophage RNAs. J. Biol. Chem. 251, 1902–1912 (1976)Search in Google Scholar

Skoko D., Yan J., Johnson R.C., Marko J.F.: Low-force DNA condensation and discontinuous high-force decondensation reveal a loop-stabilizing function of the protein Fis. Phys. Rev. Lett. 95, 208101 (2005)10.1103/PhysRevLett.95.20810116384101Search in Google Scholar

Sonnenfield J.M., Burns C.M., Higgins C.F., Hinton J.C.: The nucleoid-associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants. Biochimie, 83, 243–249 (2001)10.1016/S0300-9084(01)01232-9Search in Google Scholar

Swinger K.K., Rice P.A.: IHF and HU: Flexible architects of bent DNA. Curr. Opin. Struct. Biol. 14, 28–35 (2004)Search in Google Scholar

Talukder A., Ishihama A.: Growth phase dependent changes in the structure and protein composition of nucleoid in Escherichia coli. Sci. China Life Sci. 58, 902–911 (2015)10.1007/s11427-015-4898-026208826Search in Google Scholar

Tsui H.C., Feng G., Winkler M.E.: Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J. Bacteriol. 179, 7476–7487 (1997)10.1128/jb.179.23.7476-7487.19971797009393714Search in Google Scholar

Tsui H.C., Leung H.C., Winkler M.E.: Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol. Microbiol. 13, 35–49 (1994)Search in Google Scholar

Udekwu K.I., Darfeuille F., Vogel J., Reimegård J., Holmqvist E., Wagner E.G.H.: Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Gene. Dev. 19, 2355–2366 (2005)Search in Google Scholar

Updegrove T.B., Correia J.J., Galletto R., Bujalowski W., Wartell R.M.: E. coli DNA associated with isolated Hfq interacts with Hfq’s distal surface and C-terminal domain. Biochim. Biophys. Acta, 1799, 588–596 (2010)Search in Google Scholar

Valentin-Hansen P., Eriksen M., Udesen C.: The bacterial Sm-like protein Hfq: A key player in RNA transactions. Mol. Microbiol. 51, 1525–1533 (2004)10.1111/j.1365-2958.2003.03935.x15009882Search in Google Scholar

Vassilieva I.M., Nikulin A.D., Blasi U., Moll I., Garber M.B.: Crystallization of Hfq protein: a bacterial gene-expression regulator. Acta Crystallogr. D. Biol. Crystallogr. 59, 1061–1063 (2003)10.1107/S090744490300692912777774Search in Google Scholar

Vassilieva I.M., Rouzanov M.V, Zelinskaya N.V, Moll I., Blasi U., Garber M.B.: Cloning, purification, and crystallization of a bacterial gene expression regulator – Hfq protein from Escherichia coli. Biochemistry, 67, 1293–1297 (2002)Search in Google Scholar

Vaughan S., Wickstead B., Gull K., Addinall S.G.: Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J. Mol. Evol. 58, 19–29 (2004)Search in Google Scholar

Vecerek B., Beich-Frandsen M., Resch A., Blasi U.: Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding. Nucleic Acids Res. 38, 1284–1293 (2010)10.1093/nar/gkp1125283133119969548Search in Google Scholar

Vogel J., Luisi B.F.: Hfq and its constellation of RNA.: Nat. Rev. Microbiol. 9, 578–589 (2011)Search in Google Scholar

Vogt S.L., Raivio T.L.: Hfq reduces envelope stress by controlling expression of envelope-localized proteins and protein complexes in enteropathogenic Escherichia coli. Mol. Microbiol. 92, 681–697 (2014)Search in Google Scholar

Vytvytska O., Jakobsen J.S., Balcunaite G., Andersen J.S., Baccarini M., von Gabain A.: Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc. Natl. Acad. Sci. USA, 95, 14118–14123 (1998)10.1073/pnas.95.24.14118243369826663Search in Google Scholar

Vytvytska O., Moll I., Kaberdin V.R., Von Gabain A., Bläsi U.: Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Gen. Dev. 14, 1109–1118 (2000)Search in Google Scholar

Zhang A., Altuvia S., Tiwari A., Argaman L., Hengge-Aronis R., Storz G.: The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J. 17, 6061–6068 (1998)10.1093/emboj/17.20.606111709329774349Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo