1. bookVolume 56 (2017): Edizione 3 (January 2017)
Dettagli della rivista
License
Formato
Rivista
eISSN
2545-3149
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese, Polacco
Accesso libero

Nitroaromatic compounds – characteristics and methods of biodegradation

Pubblicato online: 22 May 2019
Volume & Edizione: Volume 56 (2017) - Edizione 3 (January 2017)
Pagine: 289 - 305
Ricevuto: 01 Jan 2017
Accettato: 01 Mar 2016
Dettagli della rivista
License
Formato
Rivista
eISSN
2545-3149
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese, Polacco

Aiub C.A.F., Mazzei J.L., Pinto L.F.R., Felzenszwalb I.: Evaluation of nitroreductase and acetyltransferase participation in n-nitrosodiethylamine genotoxicity. Chem. Biol. Interact.161, 146–154 (2006)10.1016/j.cbi.2006.03.012Search in Google Scholar

Alexander M.: Bioremediation and biodegradation. J. Environ. Qual.32, 1126–1133 (1999)Search in Google Scholar

Ang E.L., Zhao H., Obbard J.P.: Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb. Technol.37, 487–496 (2005)10.1016/j.enzmictec.2004.07.024Search in Google Scholar

Angermaier L., Simon H.:On nitroaryl reductase activities in several Clostridia. Biol. Chem.364, 1653–1664 (1983).10.1515/bchm2.1983.364.2.1653Search in Google Scholar

Arora P.K., Srivastava A., Singh V.P.: Degradation of 4-chloro-3-nitrophenol via a novel intermediate, 4-chlororesorcinol by Pseudomonas sp. JHN. Sci. Rep.4, DOI: 10.1038/srep04475 (2014)10.1038/srep04475Search in Google Scholar

Baj J., Markiewicz Z.: Biologia molekularna bakterii. PWN, Warszawa, 2006Search in Google Scholar

Backhaus T., Froehner K., Altenburger R., Grimme L.H.: Toxicity testing with Vibrio fishcheri: a comparison between the long term (24 h) and the short term (30 min) bioassay. Cheraospher, 35, 2925–2938 (1997)10.1016/S0045-6535(97)00340-8Search in Google Scholar

BACTrem Sp. z o.o., http://www.bactrem.pl/ (29-12-2016)Search in Google Scholar

Bhattacharya A., Purohit V.C., Suarez V., Tichkule R., Parmer G., Rinaldi F.: One-step reductive amidation of nitro arenes: application in the synthesis of acetaminophen tm. Tetrahedron Lett.47, 1861–1864 (2006)10.1016/j.tetlet.2005.09.196Search in Google Scholar

Bojanowska I.: Bioremediacja metali ciężkich i innych zanieczyszczeń z gleby. Materiały Wykładowe – Zakład Inżynierii Środowiska Wydziału Chemicznego Uniwersytetu Gdańskiego, www.parasit.ump.edu.pl/seminars/1WL-2/W-3.pdf (04-03-2017)Search in Google Scholar

Booth G.: Nitro Compounds, Aromatic (w) Ullmann’s Encyclopedia of Industrial Chemistry, red. G. Booth, John Wiley& Sons, New York, 2007, s. 302–349Search in Google Scholar

Błaszczyk M.K.: Mikroorganizmy w ochronie środowiska. PWN, Warszawa, 2007Search in Google Scholar

Bruns-Nagel D., Knicker H., Drzyzga O., Butehorn U., Steinbach K., Gemsa D., Low E.: Characterization of 15 n-TNT residues after an anaerobic/aerobic treatment of soil/molasses mixtures by solid-state 15n nmr spectroscopy .2 .systematic investigation of whole soil and different humic fractions. Environ. Sci. Technol.34, 1549–1556 (2000)10.1021/es990757uSearch in Google Scholar

Bugg T.D.H.: Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron.59, 7075–7101 (2003)10.1016/S0040-4020(03)00944-XSearch in Google Scholar

Calza P., Massolino C., Pelizzetti E., Minero C.: Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater. Sci. Total Environ.398, 196–202 (2008)10.1016/j.scitotenv.2008.03.02318452974Search in Google Scholar

de Carvalho C.C.: Adaptation of Rhodococcus to organic solvents (w) Biology of Rhodococcus, red. H.M. Alvarez, Springer, Berlin Heidelberg, 2010, s. 109–13110.1007/978-3-642-12937-7_5Search in Google Scholar

Cho C.M., Mulchandani A., Chen W.: Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl. Environ. Microbiol.68, 2026–2030 (2002)10.1128/AEM.68.4.2026-2030.2002Search in Google Scholar

Coates J.D., Anderson R.T.: Emerging techniques for anaerobic bioremediation of contaminated environments. Trends Biotechnol.18, 408–412 (2000)10.1016/S0167-7799(00)01478-5Search in Google Scholar

Corbett M.D., Corbett B.R.: Bioorganic chemistry of the arylhydroxylamine and nitrosoarene functional groups (w) Biodegradation of nitroaromatic compounds, red. J.C. Spain, Springer US., New York, 1995, s. 151–18210.1007/978-1-4757-9447-2_10Search in Google Scholar

Crocker F., Blakeney G., Jung C.: Complete degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a co-culture of Gordonia sp. KTR9 and Methylobacterium sp. JS178. Remediation, DOI: 10.1002/rem.21457 51 (2016)10.1002/rem.21457Search in Google Scholar

Dziennik Urzędowy Unii Europejskiej 31.05.2008.Komunikat Komisji w sprawie wyników analizy ryzyka i strategii ograniczania ryzyka stwarzanego przez następujące substancje: 2-nitro- toluen i 2,4-dinitrotoluen (2008/C 134/02).Search in Google Scholar

Edwards S.J., Kjellerup B.V.: Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 97, 9909–9921 (2013)Search in Google Scholar

Environmental Protection Agency’s Integrated Risk Information System (IRIS): https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@na+@rel+Trinitrotoluene (04-03-2017)Search in Google Scholar

Environmental Protection Agency: Attachment G -list of priority pollutants. www.waterboards.ca.gov/rwqcb7/board_decisions/adopted_orders/orders/2005/05_0082g.pdf+&cd=1&hl=pl&ct=clnk&gl=pl&client=firefox-b-ab, (26-12-2016)Search in Google Scholar

Esteve-Núñez A., Caballero A., Ramos J.L.: Biological degradation of 2, 4, 6-trinitrotoluene. Microbiol. Mol. Biol. Rev.65, 335–352 (2001)10.1128/MMBR.65.3.335-352.2001Search in Google Scholar

Esteve-Núñez A., Lucchesi G., Philipp B., Schink B., Ramos J.L.: Respiration of 2,4,6- trinitrotoluene by Pseudomonas sp. strain JLR11. J. Bacteriol.182, 1352–1355 (2000)10.1128/JB.182.5.1352-1355.2000Search in Google Scholar

Esteve- Núñez A., Ramos J.L.: Metabolism of 2,4,6- trinitrotoluene by Pseudomonas sp. JLR11. J. Bacteriol.32, 3802–3808 (1998)10.1021/es9803308Search in Google Scholar

European Union Risk Assessment Report: Nitrobenzene (2007): http://ecb.jrc.ec.europa.eu/documents/existing-chemicals/risk_assessment/report/nitrobenzenereport305.pdf (05-03-2017)Search in Google Scholar

Eyer P.: Reactions of nitrosobenzene with reduced glutathione. Chemico-biological interactions, 24, 227–239 (1979)10.1016/0009-2797(79)90011-5Search in Google Scholar

Fuller M.E., Manning J.E.J.: Evidence for differential effects of 2,4,6- trinitrotoluene and other munitions compounds on specific subpopulations of soil microbial communities. Environ. Toxicol. Chem.17, 2185–2195 (1998)10.1002/etc.5620171108Search in Google Scholar

Fuller M.E., Manning J.F.: Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6- trinitrotoluene (TNT). Curr. Microbiol.35, 77–83 (1997)10.1007/s0028499002169216880Search in Google Scholar

Funk S.B., Roberts D.J., Crawford D.L., Crawford R.L.: Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol.59, 2171–2177 (1993)10.1128/aem.59.7.2171-2177.19931822538357251Search in Google Scholar

Gellert G.: Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotoxicol. Environ. Saf.45, 87–91 (2000)10.1006/eesa.1999.184910677271Search in Google Scholar

Global security: Explosives – Nitroaromatics (TNT [2,4,6- trinitrotoluene]). www.globalsecurity.org (20-12-2016)Search in Google Scholar

Gorontzy T., Kuver J., Blotevogel K.-H.: Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol.139, 1331–1336 (1993)10.1099/00221287-139-6-13318360625Search in Google Scholar

Guzik U., Wojcieszyńska D., Hupert-Kocurek K.: Mikrobiologiczny rozkład związków aromatycznych w warunkach anoksji. Post. Mikrobiol.49, 217–226 (2010)Search in Google Scholar

Guzik U., Wojcieszyńska D., Krysiak M., Śląski U., Biochemii K., Kaczorek K.E.: Mikrobiologiczny rozkład alkanów ropopochodnych wprowadzenie. NAFTA-GAZ, 66, 1019–1027 (2010)Search in Google Scholar

Guzik U.: Charakterystyka biochemiczna i genetyczna enzymów z grupy dioksygenaz, uczestniczących w rozkładzie związków aromatycznych, u wybranych szczepów bakterii. Rozprawa doktorska, Wydział Biologii i Ochrony Środowiska, Uniwersytet Śląski, Katowice, 2007Search in Google Scholar

Haghighi-Podeh M.R., Bhattacharya S.K.: Fate and toxic effects of nitrophenols on anaerobic treatment systems. Water Sci. Technol, 34, 345–350 (1996)Search in Google Scholar

Hanstein W.G., Hatefi Y.: Trinitrophenol: a membrane-impermeable uncoupler of oxidative phosphorylation. Proc. Natl. Acad. Sci. USA, 71, 288–92 (1974)10.1073/pnas.71.2.2883879884521802Search in Google Scholar

Hatzinger P. B., Kelsey J. W. R: Biodegradation (w) Encyclopedia of Soils in the Environment, red. D. Hillel, Elsevier, New York, 2005, s. 250–25810.1016/B0-12-348530-4/00139-9Search in Google Scholar

Hepworth J.D., Waring D.R., Waring M.J.: Chemia związków aromatycznych. PWN, Warszawa, 2009Search in Google Scholar

Hess T., Schmidt S., Silversstein J., Howe B.: Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl. Environ. Microbiol.56, 1551–1558 (1990)10.1128/aem.56.6.1551-1558.199018447016348203Search in Google Scholar

Islam M.N., Shin M.S., Jo Y.T., Park J.H.: TNT and RDX degradation and extraction from contaminated soil using subcritical water. Chemosphere, 119, 1148–1152 (2015)10.1016/j.chemosphere.2014.09.10125460755Search in Google Scholar

Johnson G.R., Spain J.C.: Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2, 4-dinitrotoluene and nitrobenzene. Appl. Microbiol. Biotechnol.62, 110–123 (2003)10.1007/s00253-003-1341-412750857Search in Google Scholar

Ju K.S., Parales R.E.: Nitroaromatic compounds, from synthesis to biodegradation. Microbiol. Mol. Biol. Rev.74, 250–72 (2010)10.1128/MMBR.00006-10288441320508249Search in Google Scholar

Kadiyala V., Nadeau L.J.: Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols. Appl. Environ. Microbiol.69, 6520–6526 (2003)10.1128/AEM.69.11.6520-6526.200326229414602609Search in Google Scholar

Kanekar P., Dautpure P., Sarnaik S.: Biodegradation of nitro-explosives. Indian J. Exp. Biol.41, 991–1001 (2003)Search in Google Scholar

Kao C., Lin B., Chen S., Wei S., Yao C., Chien C.: Biodegradation of trinitrotoluene (TNT) by indigenous microorganisms from TNT- contaminated soil, and their application in TNT bioremediation. Bioremediation J.9868, 1547–6529 (2016)10.1080/10889868.2016.1148007Search in Google Scholar

Karlová P., Gelbíčová T., Sedláček I.: Substrate interactions between 4-nitrophenol and 4-nitrotoluene during biodegradation of their mixture. Desalin. Water Treat.57, 2759–2765 (2016)10.1080/19443994.2015.1071285Search in Google Scholar

Karta charakterystyki niebezpiecznej substancji – 4-nitroanilina, zgodnie z Roz. MZ z dnia 03.07.2002 r., PN-ISO 11014-1 i Dyrektywą 91/155/EECSearch in Google Scholar

Karta charakterystyki niebezpiecznej substancji – dinitrotoluen, 22 grudnia 2008 r. Na podstawie zał. II do Roz.WE 1907/2006 Parlamentu Europejskiego i Rady z dnia 18 grudnia 2006 r.Search in Google Scholar

Karta charakterystyki niebezpiecznej substancji – nitrobenzen, zgodnie z Roz. MZ z dnia 03.07.2002 r., PN-ISO 11014-1 i Dyrektywą91/155/EECSearch in Google Scholar

Karta charakterystyki niebezpiecznej substancji MERC – 2,4-dinitrofenol, zgodnie z Roz. WE 1907/2006Search in Google Scholar

Karta charakterystyki niebezpiecznej substancji MERC – 2-nitrofenol, zgodnie z Roz. WE 1907/2006Search in Google Scholar

Kinouchi T., Yoshinari O.: Purification and characterization of 1-nitropyrene nitroreductases from Bacteroidesfragilis. Appl. Environ. Microbiol.46, 596–604 (1983)10.1128/aem.46.3.596-604.1983Search in Google Scholar

Klausmeier R.E., Osmon J.L., Walls D.R.: The effect of trinitrotoluene on microorganisms. Dev. Ind. Microbiol. 15, 309–317 (1973)Search in Google Scholar

Kołwzan B., Adamiak W., Grabas K., Pawełczyk A.: Podstawy mikrobiologii w ochronie środowiska. Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław, 2005Search in Google Scholar

Krygowski T.M.i wsp.: Chemia – encyklopedia szkolna. WSiP, Warszawa, 2001Search in Google Scholar

Kulkarni M., Chaudhari A.: Microbial remediation of nitro-aromatic compounds: an overview. J. Environ. Manage.85, 496–512 (2007)10.1016/j.jenvman.2007.06.009Search in Google Scholar

Kundu D., Hazra C., Chaudhari A.: Bioremediation potential of Rhodococcus pyridinivorans NT2 in nitrotoluenes contaminated soils: The effectiveness of natural attenuation, biostimulation and bioaugmentation approaches. Soil Sediment Contam. DOI: 10.1080/15320383.2016.1190313 (2016)10.1080/15320383.2016.1190313Search in Google Scholar

Lague D.: China blames oil firm for chemical spill. The New York Times, http://www.nytimes.com/2005/11/24/world/asia/24iht-harbin.html (29-12-2016)Search in Google Scholar

Lang M., Spiteller P., Hellwig V., Steglich W.: Stephanosporin, a “traceless” precursor of 2-chloro-4-nitrophenol in the Gasteromycete Stephanospora caroticolor. Angew. Chemie – Int. Ed.40, 1704–1705 (2001)10.1002/1521-3773(20010504)40:9<1704::AID-ANIE17040>3.0.CO;2-LSearch in Google Scholar

Lewis T.A., Newcombe D.A., Crawford R.L.: Bioremediation of soils contaminated with explosives. J. Environ. Manage.70, 291–307 (2004)10.1016/j.jenvman.2003.12.005Search in Google Scholar

Lin H., Chen X., Ding H., Jia X., Zhao Y.: Isolation and characterization of Rhodococcus sp.NB5 capable of degrading a high concentration of nitrobenzene. J. Basic Microbiol.51, 397–403 (2011)10.1002/jobm.200900429Search in Google Scholar

Liu N., Ding F., Wang L., Liu P., Yu X., Ye K.: Coupling of bioprb and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater. Env. Sci Pollut Res. DOI: 10.1007/s11356-016-6206-3 (2016)10.1007/s11356-016-6206-3Search in Google Scholar

Maples K.R., Eyer P., Manson R.P.: Aniline-, phenyihydroxyla- mine-, and hemoglobin thiyl free radical formation in vivo and in vitro. Mol. Pharmacol.37, 311–318 (1989)Search in Google Scholar

Mason R.P., Holtzman J.L.: The role of catalytic superoxide formation in the o2 inhibition of nitroreductase. Biochem. Biophys. Res. Commun.67, 1267–1274 (1975)10.1016/0006-291X(75)90163-1Search in Google Scholar

McCormick N.G., Feeherry F.E., Levinson H.S.: Microbial transformation of 2,4,6- trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol.31, 949–958 (1976)10.1128/aem.31.6.949-958.1976Search in Google Scholar

McMurry J.: Chemia organiczna. Tom 3. PWN, Warszawa, 2013Search in Google Scholar

Nielsen L.E., Nielsen L.E., Nickerson K.W., Nickerson K.W.: Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in. Microbiology,71, 5171–5176 (2005)10.1128/AEM.71.9.5171-5176.2005Search in Google Scholar

Nishino N., Atkinson R., Arey J.: Formation of nitro products from the gas-phase oh radical-initiated reactions of toluene, naphthalene, and biphenyl: effect of NO2 concentration. Environ. Sci. Technol.42, 9203–9209 (2008)10.1021/es802046mSearch in Google Scholar

Nishino S.F., Paoli G.C.: Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2, 6-dinitrotoluene. Appl. Environ. Microbiol.66, 2139–2147 (2000)10.1128/AEM.66.5.2139-2147.2000Search in Google Scholar

Nishino S.F., Spain J.C.: Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. strain JS765. Appl. Environ. Microbiol.61, 2308–2313 (1995)10.1128/aem.61.6.2308-2313.1995Search in Google Scholar

Otto K., Hofstetter K., Röthlisberger M., Witholt B., Schmid A.: Biochemical characterization of styab from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J. Bacteriol.186, 5292–5302 (2004)10.1128/JB.186.16.5292-5302.2004Search in Google Scholar

Oves M., Saghir Khan M., Huda Qari A., Nadeen Felemban M., Almeelbi T.: Heavy Metals: Biological Importance and Detoxification Strategies. J. Bioremediat. Biodegrad.7, DOI: 10.4172/2155-6199.1000334 (2016)10.4172/2155-6199.1000334Search in Google Scholar

Pacheco A.de O., Kagohara E., Andrade L.H., Comasseto J.V., Crusius I.H.S., Paula C.R., Porto A.L.M.: Biotransformations of nitro-aromatic compounds to amines and acetamides by tuberous roots of Arracacia xanthorrhiza and Beta vulgaris and associated microorganism (candida guilliermondii). Enzyme Microb. Technol.42, 65–69 (2007)Search in Google Scholar

Paracetamol – informacja od wytwórcy: http://web.archive.org/web/20130407031450/http://www.pharmweb.net/pwmirror/pwy/paracetamol/pharmwebpicg.html (04-03-2017)Search in Google Scholar

Peres C.M., Agathos S.N.: Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnol. Annu. Rev.6, 197–220 (2000)10.1016/S1387-2656(00)06023-3Search in Google Scholar

Peterson J., Mason P., Hovsepian J., Holtzman J.: Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat microsomes. J. Biol. Chem.254, 4009–4014 (1979)10.1016/S0021-9258(18)50687-6Search in Google Scholar

Qureshi A., Purohit H.: Isolation of bacterial consortia for degradation of p- nitrophenol from agricultural soil. Ann. Appl. Biol.140, 159–162 (2002)10.1111/j.1744-7348.2002.tb00168.xSearch in Google Scholar

Radi R.: Nitric oxide, oxidants, and protein tyrosine nitration. PNAS, 101, 4003–4008 (2003)10.1073/pnas.030744610138468515020765Search in Google Scholar

Ramos J.L., González-Pérez M.M., Caballero A., Dillewijn P. Van: Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr. Opin. Biotechnol.16, 275–281 (2005)10.1016/j.copbio.2005.03.01015961028Search in Google Scholar

Razo-Flores E., Donlon B., Lettinga G., Field J.A.: Biotransformation and biodegradation of n-substituted aromatics in methanogenic granular sludge. FEMS Microbiol. Rev.20, 525–538 (1997)10.1111/j.1574-6976.1997.tb00335.x9340000Search in Google Scholar

Rieger P.G., Knackmuss H.J.: Basic knowledge and perspectives on biodegradation of 2, 4, 6-trinitrotoluene and related nitroaromatic compounds in contaminated soil (w) Biodegradation of nitroaromatic compounds. red. J.C. Spain, Springer US, New York, 1995, s. 1–1810.1007/978-1-4757-9447-2_1Search in Google Scholar

Roldán M.D., Pérez-Reinado E., Castillo F., Moreno-Vivián C.: Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. DOI:10.1111/j.1574-6976.2008.00107.x (2008)10.1111/j.1574-6976.2008.00107.x18355273Search in Google Scholar

Sax I.R., Lewis R.J.: Nitro-compounds of aromatic hydrocarbons. Dangerous properties of industrial material,2, 2534–2536 (1999)Search in Google Scholar

Schrader P.S., Hess T.F.: Bioremediation and biodegradation coupled abiotic-biotic mineralization of 2,4,6- trinitrotoluene (TNT) in soil slurry. J. Environ. Qual.33, 1202–1209 (2004)10.2134/jeq2004.120215254101Search in Google Scholar

Shao P., Yuan X., Liu R., Cao J.P.: Effects of nitrobenzene on liver antioxidant defense system of Carassius auratus. Chem. Res. Chinese Univ.26, 204–209 (2010)Search in Google Scholar

Sheu Y.T., Lien P.J., Chen C.C., Chang Y.M., Kao C.M.: Bioremediation of 2,4,6- trinitrotoluene-contaminated groundwater using unique bacterial strains: microcosm and mechanism studies. Int. J. Environ. Sci. Technol.13, 1357–1366 (2016)10.1007/s13762-016-0976-5Search in Google Scholar

Siciliano S.D., et al.: Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol.67, DOI: 10.1128/AEM.67.6.2469-2475.2001 (2001)10.1128/AEM.67.6.2469-2475.20019289611375152Search in Google Scholar

Smitha M.S., Singh R., Liu H.-J.: Novel bacillus consortium for degradation of 2,4-dinitrotoluene: a xenobiotic compound. Br. Microbiol. Res. J.15, 1–10 (2016)10.9734/BMRJ/2016/25837Search in Google Scholar

Snellinx Z., Taghavi S., Vangronsveld J., LelieD.Van Der: Microbial consortia that degrade 2, 4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation,14, 19–29 (2003)Search in Google Scholar

Somerville C.C., Nishino S.F., Spain J.C.: Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol.177, 3837–3842 (1995)10.1128/jb.177.13.3837-3842.19951771047601851Search in Google Scholar

Spain J.C., Hughes J.B., Knackmuss H.J.: Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, 200010.1201/9781420032673Search in Google Scholar

Spain J.C.: Bacterial degradation of nitroaromatic compounds under aerobic conditions (w) Biodegradation of Nitroaromatic Compounds, red. J.C. Spain , Springer Science+Business Media, New York, 1995, s. 19–3510.1007/978-1-4757-9447-2_2Search in Google Scholar

Spain J.C.: Biodegradation of nitroaromatic compounds. Annual Rev. Microbiol.49, 523–555 (1995)10.1146/annurev.mi.49.100195.0025158561470Search in Google Scholar

Spain J.C., Gibson D.T.: Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol.57, 812–819 (1991)10.1128/aem.57.3.812-819.199118279916348446Search in Google Scholar

Suen W.C., Haigler B.E., Spain J.C.: 2,4-dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J. Bacteriol.178, 4926–4934 (1996)Search in Google Scholar

Talmage S.S., Opresko D.M., Maxwell C.J., Welsh C., Cretella F.M., Reno P.H., Daniel F.B.: Nitroaromatic munition compounds: environmental effects and screening values. Re. Environ. Contam. Toxicol.161,1–156 (1999)10.1007/978-1-4757-6427-7_110218448Search in Google Scholar

Travis E.R., Hannink N.K., Van Der Gast C.J., Thompson I.P., Rosser S.J., Bruce N.C.: Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ. Sci. Technol.41, 5854–5861 (2007)10.1021/es070507a17874797Search in Google Scholar

Travis A.S.: Manufacture and uses of the anilines: a vast array of processes and products. Chemistry of Functional Groups. DOI: 10.1002/9780470682531.pat0395 (2007)10.1002/9780470682531.pat0395Search in Google Scholar

Tyagi M., da Fonseca M.M.R., de Carvalho C.C.C.R.: Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231–241 (2011)10.1007/s10532-010-9394-420680666Search in Google Scholar

Unell M., Kabelitz N., Jansson J.K., Heipieper H.J.: Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol. Lett.266, 138–143 (2007)10.1111/j.1574-6968.2006.00502.x17233723Search in Google Scholar

Vaillancourt E.H., Bolin J.T., Eltis L.D.: The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. Biol.41, 241–267 (2006)10.1080/1040923060081742216849108Search in Google Scholar

Vorbeck C., Lenke H., Fischer P., Knackmuss H.J.: Identification of a hydride-meisenheimer complex as a metabolite of 2,4,6- trinitrotoluene by a mycobacterium strain. J. Bacteriol.176, 932–934, 199410.1128/jb.176.3.932-934.1994Search in Google Scholar

Wakefield J.C.: Nitrobenzene toxicological overview. Health Protection Agency, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/338243/hpa_nitroben zene_toxicological_overview_v1.pdf (20-12-2016)Search in Google Scholar

World Health Organization: Nitrobenzene. Environmental health criteria 230. http://www.inchem.org/documents/ehc/ehc/ehc230.htm (19.12.2016)Search in Google Scholar

Widrig D.L., Boopathy R., Manning J.F.: Bioremediation of TNT-contaminated soil: a laboratory study. Environ. Toxicol. Chem.16, 1141–1148 (1997)10.1002/etc.5620160608Search in Google Scholar

Winkler R., Hertweck C.: Biosynthesis of nitro compounds., Chem. BioChem. 8, 973 – 977 (2007)Search in Google Scholar

Williamson K.L.: Macroscale and microscale organic experiments. Houghton-Mifflin, Boston, 2002Search in Google Scholar

World Health Organization: International Programme on Chemical Safety, http://www.inchem.org/pages/ehc.html (04-032017)Search in Google Scholar

Wójcik P., Tomaszewska B.: Biotechnologia w remediacji zanieczyszczeń organicznych. Biotechnologia,4, 156–172 (2005)Search in Google Scholar

Wu Z., Liu Y., Liu H., Xia Y., Shen W., Hong Q., Li S., Yao H.: Characterization of the nitrobenzene-degrading strain Pseudomonas sp.A3 and use of its immobilized cells in the treatment of mixed aromatics wastewater. World J. Microbiol. Biotechnol.28, 2679–2687 (2012)10.1007/s11274-012-1078-2Search in Google Scholar

Zeyer J., Kocher H.P., Timmis K.N.: Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl. Environ. Microbiol.52, 334–339 (1986)10.1128/aem.52.2.334-339.1986Search in Google Scholar

Ziegenfuss P.S., Williams R.T., Weston R.F., Chester W., Myler C.A.: Hazardous materials compostion. J. Hazard. Mater.28, 91–99 (1991)10.1016/0304-3894(91)87009-QSearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo