1. bookVolume 56 (2017): Edizione 3 (January 2017)
Dettagli della rivista
License
Formato
Rivista
eISSN
2545-3149
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese, Polacco
Accesso libero

Underground communication – the new elements of signalling pathways of arbuscular mycorrhizal symbiosis

Pubblicato online: 22 May 2019
Volume & Edizione: Volume 56 (2017) - Edizione 3 (January 2017)
Pagine: 275 - 281
Ricevuto: 01 Dec 2016
Accettato: 01 Apr 2016
Dettagli della rivista
License
Formato
Rivista
eISSN
2545-3149
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese, Polacco

Akiyama K., Matsuzaki K., Hayashi H.: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827 (2005)10.1038/nature0360815944706Search in Google Scholar

Berch S.M., Massicotte H.B., Tackaberry L.E.: Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas. Mycorrhiza, 15, 323–332 (2005)10.1007/s00572-004-0334-115549481Search in Google Scholar

Bonfante P., Genre A.: Mechanisms underlying beneficial plant – fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, doi 10.1038/ncomms1046 (2010)10.1038/ncomms104620975705Search in Google Scholar

Buendia L., Wang T., Girardin A., Lefebvre B.: The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytol. 210, 184–195 (2016)10.1111/nph.1375326612325Search in Google Scholar

Ch.W. Dunk., Lebel T., Keane P.J.: Characterisation of ectomycorrhizal formation by the exotic fungus Amanita muscaria with Nothofagus cunninghamii in Victoria, Australia. Mycorrhiza,22, 135–147 (2012)10.1007/s00572-011-0388-921573836Search in Google Scholar

Douds Jr.D.D., Pfeffer P.E., Shachar-Hill Y.: Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas (w) Arbuscular mycorrhizas physiology and function, red. Y. Kapulnik, Jr.D.D. Douds, Springer Netherlands, Dordrecht, 2000, s. 107–12910.1007/978-94-017-0776-3_6Search in Google Scholar

Endre G., Kereszt A., Kevei Z., Mihacea S., Kaló P., Kiss G.B.: A receptor kinase gene regulating symbiotic nodule development. Nature, 417, 962–966 (2002)10.1038/nature0084212087406Search in Google Scholar

Field K.J., Rimington W.R., Bidartondo M.I., Allinson K.E., Beerling D.J., Cameron D.D., Duckett J.G., Leake J.R., Pressel S.: First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol.205, 743–756 (2015)10.1111/nph.13024430399225230098Search in Google Scholar

File A.L., Klironomos J., Maherali H., Dudley S.A.: Plant kin recognition enhances abundance of symbiotic microbial partner. PLoS ONE, 7, e45648 (2012)10.1371/journal.pone.0045648346093823029158Search in Google Scholar

Genre A., Russo G.: Does a common pathway transduce symbiotic signals in plant-microbe interactions? Front. Plant Sci.7, doi 10.3389/fpls.2016.00096 (2016)10.3389/fpls.2016.00096475445826909085Search in Google Scholar

Hawkins B.J., Jones M.D., Kranabetter J.M.: Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New Forests, 46, 747–771 (2015)10.1007/s11056-015-9488-2Search in Google Scholar

Helber N., Wippel K., Sauer N., Schaarschmidt S., Hause B., Requena N.: A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell, 23, 3812–3823 (2011)10.1105/tpc.111.089813322915121972259Search in Google Scholar

Kapulnik Y., Koltai H.: Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol.166, 560–569 (2014)10.1104/pp.114.244939421308825037210Search in Google Scholar

Kheyrodin H.: Plant and Soil Relationship between Fungi. IJRSB.2, 42–49 (2014)Search in Google Scholar

Luginbuehl L., Oldroyd G.E.D.: Calcium signaling and transcriptional regulation in arbuscular mycorrhizal symbiosis (w) Molecular mycorrhizal symbiosis, red. F. Martin, John Wiley& Sons, Hoboken, New Jersey, 2016, s. 125–14010.1002/9781118951446.ch8Search in Google Scholar

Madsen E.B., Stougaard J.: Receptor Kinases Mediating Early Symbiotic Signalling (w) Receptor-like kinases in plants, red. F. Tax., B. Kemmerling, Springer-Verlag, Berlin Heidelberg, 2012, s. 93–10710.1007/978-3-642-23044-8_6Search in Google Scholar

Miller J.B., Pratap A., Miyahara A., Zhou L., Bornemann S., Morris R.J., Oldroyd G.E.D.: Calcium/calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling. The Plant Cell, 25, 5053–5066 (2013)10.1105/tpc.113.116921390400524368786Search in Google Scholar

Miyata K., Nakagawa T. i wsp.: The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55, 1864–1872 (2014)Search in Google Scholar

Mohanta T.K., Bae H.: Functional genomics and signaling events in mycorrhizal symbiosis. J. Plant Interact.10, 21–40 (2015)10.1080/17429145.2015.1005180Search in Google Scholar

Nakagawa T., Imaizumi-Anraku H.: Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice (NY), 8, doi 10.1186/s12284-015-0067-0 (2015)10.1186/s12284-015-0067-0462646526516078Search in Google Scholar

Oehl F., Da Silva G.A., Goto B.T., Maia L.C., Sieverding E.: Glomeromycota: two new classes and a new order. Mycotaxon, 116, 365–379 (2011)10.5248/116.365Search in Google Scholar

Olsson P.A., van Aarle I.M., Gavito M.E., Bengtson P., Bengtsson G.: 13C Incorporation into signature fatty acids as an assay for carbon allocation in arbuscular mycorrhiza. Appl. Environ. Microbiol.71, 2592–2599 (2005)10.1128/AEM.71.5.2592-2599.2005108752915870350Search in Google Scholar

Parniske M.: Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Microbiology, 6, 763–775 (2008)Search in Google Scholar

Patreze C.M., Moreira M., Tsai S.M.: Advances in molecular diversity of arbuscular mycorrhizal fungi (phylum Glomeromycota) in forest ecosystems (w) Forest ecosystem – more than just trees, red. J.A. Blanco, Y.H. Lo, InTech, Rijeka, 2012, s. 53–80Search in Google Scholar

Pawlowski M.L, Hartman G.L: Infection mechanisms and colonization patterns of fungi associated with soybean (w) Fungal pathogenicity, red. S. Sultan, InTech, Rijeka, 2016, s. 25–4310.5772/62305Search in Google Scholar

Ramos A.C., Okorokova-Façanha A.L. i wsp.: An outlook on ion signaling and ionome of mycorrhizal symbiosis. Braz. J. Plant Physiol. 23, 79–89 (2011)Search in Google Scholar

Schüßler A., Walker C.: The Glomeromycota: a species list with new families and new genera. Gloucester, UK, 2010Search in Google Scholar

Schüßler A., Walker Ch.: Evolution of the ‘Plant-Symbiotic’ fungal phylum (w) Evolution of fungi and fungal-like organisms, red. S. Pöggeler, J. Wöstemeyer, Springer-Verlag, Berlin Heidelberg, 2011, s. 163–18510.1007/978-3-642-19974-5_7Search in Google Scholar

Seto Y., Kameoka H., Yamaguchi S., Kyozuka J.: Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol. 53, 1843–1853 (2012)10.1093/pcp/pcs14223054391Search in Google Scholar

Smith A.M., Coupland G., Dolan L., Harberd N., Jones J., Martin C., Sablowski R., Amey A.: Plant biology. Garland Science, New York, 200910.1201/9780203852576Search in Google Scholar

Smith S.E., Read D.J.: Mycorrhizal symbiosis. Academic Press, New York, 2008Search in Google Scholar

Smith S.M.: What are strigolactones and why are they important to plants and soil microbes? BMC Biol. 12, doi 10.1186/17417007-12-19 (2014)10.1186/1741-7007-12-19399422324685292Search in Google Scholar

Sun J., Oldroyd G.E.D. i wsp.: Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell, 27, 823–838 (2015)10.1105/tpc.114.131326455864825724637Search in Google Scholar

Tahad M.M., Sijam K.: Mycorrhizal fungi and abiotic environmental conditions relationship. Res. J. Environ. Sci.6, 125–133 (2012)10.3923/rjes.2012.125.133Search in Google Scholar

Van der Heijden M.G.A., Martin F.M., Selosse M.A., Sanders I.R.: Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015)10.1111/nph.1328825639293Search in Google Scholar

Van Ness L.K., Jayaraman D., Maeda J., Barrett-Wilt G.A., Sussman M.R., Ané J.M.: Mass spectrometric-based selected reaction monitoring of protein phosphorylation during symbiotic signaling in the model legume, Medicago truncatula. PLoS ONE, 11, e0155460 (2016)10.1371/journal.pone.0155460487455027203723Search in Google Scholar

Venkateshwaran M., Ané J.M. i wsp.: A role for the mevalonate pathway in early plant symbiotic signaling. Proc. Natl. Acad. Sci. USA, 112, 9781–9786 (2015)10.1073/pnas.1413762112453422826199419Search in Google Scholar

Zwanenburg B., Pospíšil T., Ćavar Zeljkovic S.: Strigolactones: new plant hormones in action. Planta,243, 1311–1326 (2016)10.1007/s00425-015-2455-5487594926838034Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo