1. bookVolume 56 (2017): Edizione 2 (January 2017)
Dettagli della rivista
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Inglese, Polacco
Accesso libero

Plasmids – vectors for gene therapy

Pubblicato online: 22 May 2019
Volume & Edizione: Volume 56 (2017) - Edizione 2 (January 2017)
Pagine: 214 - 225
Ricevuto: 01 Nov 2016
Accettato: 01 Feb 2017
Dettagli della rivista
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Inglese, Polacco

Ahmad I., Rao D.N.: Chemistry and biology of DNA methyltransferases. Crit. Rev. Biochem. Mol. Biol. 5–6, 361–380 (1996)10.3109/104092396091087228994802Search in Google Scholar

Ajroud-Driss S., Christiansen M., Allen J.A., Kessler J.A.: Phase 1/2 open-label dose-escalation study of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with painful diabetic peripheral neuropathy. Mol. Ther. 21, 1279–1286 (2013)10.1038/mt.2013.69367731523609019Search in Google Scholar

Agorio C., Schreiber F., Sheppard M., Mastroeni P., Fernandez M., Martinez M.A., Chabalgoity J.A.: Live attenuated Salmonella as a vector for oral cytokine gene therapy in melanoma. J. Gene Med. 9, 416–423 (2007)10.1002/jgm.102317410612Search in Google Scholar

Badding M.A., Lapek J.D., Friedman A.E., Dean D.A.: Proteomic and functional analyses of protein-DNA complexes during gene transfer. Mol. Ther. 21, 775–785 (2013)Search in Google Scholar

Barber G.N.: Cytoplasmic DNA innate immune pathways. Immunol. Rev. 243, 99–108 (2011)10.1111/j.1600-065X.2011.01051.x21884170Search in Google Scholar

Bauer A.P., Leikam D., Krinner S., Notka F., Ludwig C., Langst G., Wagner R.: The impact of intragenic CpG content on gene expression. Nucleic Acids Res. 38, 3891–3908 (2010)10.1093/nar/gkq115289651520203083Search in Google Scholar

Bishop C.J., Majewski R.L., Guiriba T.–R.M., Wilson D.R., Bhise N.S., Quiñones-Hinojosa A., Green J.J.: Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater. 37, 120–130 (2016)10.1016/j.actbio.2016.03.036506165027019146Search in Google Scholar

Bonamassa B., Hai L., Liu D.: Hydrodynamic gene delivery and its applications in pharmaceutical research. Pharm. Res. 28, 694–701 (2011)Search in Google Scholar

Broeke A.V., Burny A.: Retroviral vector biosafety: lessons from sheep. J. Biomed. Biotechnol. 1, 9–12 (2003)Search in Google Scholar

Castagliuolo I., Beggiao E., Brun P., Barzon L., Goussard S., Manganelli R., Grillot-Courvalin C., Palu G.: Engineered E. coli delivers therapeutic genes to the colonic mucosa. Gene. Ther. 12, 1070–1078 (2005)10.1038/sj.gt.330249315815705Search in Google Scholar

Chandler R.J., LaFave M.C., Varshney G.K., Burgess S.M., Venditti C.P.: Genotoxicity in mice following AAV gene delivery: a safety concern for human gene therapy? Mol. Ther. 24, 198–201 (2016)10.1038/mt.2016.17481782726906613Search in Google Scholar

Chandler R.J., LaFave M.C., Varshney G.K., Trivedi N.S., Carrillo-Carrasco N., Senac J.S., Wu W., Hoffmann V., Elkahloun A.G., Burgess S.M., Venditti C.P.: Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J. Clin. Invest. 125, 870–880 (2015)10.1172/JCI79213431942525607839Search in Google Scholar

Chen Z.Y., He C.Y., Meuse L., Kay M.A.: Silemcing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther. 11, 856–864 (2004)10.1038/sj.gt.330223115029228Search in Google Scholar

Cheng X.: DNA modification by methyltransferases. Curr. Opin. Struct. Biol. 5, 4–10 (1995)10.1016/0959-440X(95)80003-JSearch in Google Scholar

Collier J.: Epigenetic regulation of the bacterial cell cycle. Curr. Opin. Microbiol. 12, 722–729 (2009)Search in Google Scholar

Costa D., Valente A.J.M., Miguel M.G., Queiroz J.: Plasmid DNA hydrogels for biomedical applications. Adv. Colloid Interface Sci. 205, 257–264 (2014)10.1016/j.cis.2013.08.00224011472Search in Google Scholar

Costa D., Valente A.J.M., Miguel M.G., Queiroz J.: Plasmid DNA microgels for drug/gene co-delivery: A promising approach for cancer therapy. Colloids and Surfaces A: Physicochem. Eng. Aspects, 442, 181–190 (2014)10.1016/j.colsurfa.2013.02.048Search in Google Scholar

Darquet A.M., Cameron B., Wils P., Scherman D., Crouzet J.: A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 4, 1341–1349 (1997)10.1038/sj.gt.33005409472558Search in Google Scholar

Darquet A.M., Rangara R., Kreiss P., Schwartz B., Naimi S., Delaère P., Crouzet J., Scherman D.: Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther. 6, 209–218 (1999)10.1038/sj.gt.330081610435105Search in Google Scholar

Dauty E., Verkman A.S.: Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J. Biol. Chem. 280, 7823–7828 (2005)Search in Google Scholar

Deaton A.M., Bird A.: CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011)10.1101/gad.2037511309311621576262Search in Google Scholar

Donsante A., Vogler C., Muzyczka N., Crawford J.M., Barker J., Flotte T., Campbell-Thompson M., Daly T., Sands M.S.: Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther. 8, 1343–1346 (2001)10.1038/sj.gt.330154111571571Search in Google Scholar

Edelstein M.L., Abedi M.R., Wixon J.: Gene therapy clinical trials worldwide to 2007 – an update. J. Gene Med. 9, 833–842 (2007)10.1002/jgm.110017721874Search in Google Scholar

Edelstein M.L., Abedi M.R., Wixon, J., Edelstein R.M.: Gene therapy clinical trials worldwide 1989–2004 – an overview. J. Gene Med. 6, 597–602 (2004)10.1002/jgm.61915170730Search in Google Scholar

Ehrhardt A., Haase R., Schepers A., Deutsch M.J., Lipps H.J., Baiker A.: Episomal vectors for gene therapy. Curr. Gene Ther. 8, 147–161 (2008)Search in Google Scholar

European Pharmacopea 8.0., Chapter 5.14. 705–716 (2014)10.1166/jnn.2014.910624730291Search in Google Scholar

Escors D., Breckpot K.: Lentiviral vectors in gene therapy: their current status and future potential. Arch. Immunol. Ther. Exp. (Warsz.), 58, 107–119 (2010)Search in Google Scholar

European Medicines Agency (EMEA): Note for guidance on the quality, preclinical and clinical aspects of gene transfer medicinal products. Doc. Ref. EMEA/273974/2005, (2005)Search in Google Scholar

Faurez F., Dory D., Le Moigne V., Gravier R., Jestin A.: Biosafety of DNA vaccines: new generation of DNA vectors and current knowledge on the fate of plasmid after injection. Vaccine, 28, 3888–3895 (2010)10.1016/j.vaccine.2010.03.04020371391Search in Google Scholar

Gardlik R., Behuliak M., Palffy R., Celec P., Li C.J.: Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy. Gene Ther. 18, 425–431 (2011)10.1038/gt.2010.17621228886Search in Google Scholar

Gaspar V., de Melo-Diogo D., Costa E., Moreira A., Queiroz J., Pichon C., Correia I., Sousa F.: Minicircle DNA vectors for gene therapy: advances and applications. Expert Opin. Biol. Ther. 15, 353–379 (2015)Search in Google Scholar

Gene Therapy Clinical Trials Worldwide, http://www.wiley.com//legacy/wileychi/genmed/clinical/ (28.10.2016)Search in Google Scholar

Ginn S.L., Alexander I.E., Edelstein M.L., Abedi M.R., Wixon J.: Gene therapy clinical trials worldwide to 2012 – an update. J. Gene Med. 15, 65–77 (2013)10.1002/jgm.269823355455Search in Google Scholar

Giacca M., Zacchigna S.: VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 19, 622–629 (2012)10.1038/gt.2012.1722378343Search in Google Scholar

Golzio M., Teissie J., Rols M-P.: Direct visualization at the single-cell level of electrically mediated gene delivery. Proc. Natl. Acad. Sci. USA, 99, 1292–1297 (2002)10.1073/pnas.02264649912218311818537Search in Google Scholar

Gravier R., Dory D., Laurentie M., Bougeard S., Cariolet R., Jestin A.: In vivo tissue distribution and kinetics of a pseudorabies virus plasmid DNA vaccine after intramuscular injection in swine. Vaccine, 25, 6930–6938 (2007)10.1016/j.vaccine.2007.07.00117728026Search in Google Scholar

Gromova E.S., Khoroshaev A.V.: Prokaryotic DNA methyltransferases: the structure and the mechanism of interaction with DNA. Mol. Biol. 37, 260–272 (2003)Search in Google Scholar

Hacein-Bey-Abina, S., Cavazzana-Calvo, M. i wsp.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 302, 415–419 (2003)10.1126/science.108854714564000Search in Google Scholar

Hartmann G., Krieg A.M.: Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164, 944–953 (2000)10.4049/jimmunol.164.2.94410623843Search in Google Scholar

Henry T.D., Hirsch A.T., Goldman J., Wang Y.L., Lips D.L., McMillan W.D., Duval S., Biggs T.A., Keo H.H.: Safety of a non-viral plasmid-encoding dual isoforms of hepatocyte growth factor in critical limb ischemia patients: a phase I study. Gene Ther. 18, 788–794 (2011)10.1038/gt.2011.2121430785Search in Google Scholar

Hernando-Herraez I., Garcia-Perez R., Sharp A.J., Marques-Bonet T.: DNA methylation: insights into human evolution. PLoS Genet. DOI:10.1371/journal.pgen.1005661 (2015)10.1371/journal.pgen.1005661468432826658498Search in Google Scholar

Hoare T.R, Kohane D.S.: Hydrogels in drug delivery: Progress and challenges. Polymer, 49, 1993–2007 (2008)10.1016/j.polymer.2008.01.027Search in Google Scholar

Howe S.J., Thrasher A.J. i wsp.: Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118, 3143–3150 (2008)Search in Google Scholar

Hyde S.C., Gill D.R. i wsp.: CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat. Biotechnol. 26, 549–551 (2008)Search in Google Scholar

Jiao S., Acsadi G., Jani A., Felgner P.L., Wolff J.A.: Persistance of plasmid DNA and expression in rat brain cells in vivo. Exp. Neurol. 115, 400–413 (1992)Search in Google Scholar

Jones P.A., Takai D.: The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070 (2001)10.1126/science.106385211498573Search in Google Scholar

Kitagawa T., Iwazawa T., Robbins P., Lotze M., Tahara H.: Advantages and limitations of particle-mediated transfection (gene gun) in cancer immuno-gene therapy using IL-10, IL-12 or B7-1 in murine tumor models. J. Gene Med. 5, 958–965 (2003)10.1002/jgm.44114601133Search in Google Scholar

Koike H., Ishida A., Hayashi T., Shimamura M., Mizuno S., Nakamura T., Iida H., Ogihara T., Kaneda Y., Morishita R.: Injection of HGF plasmid cDNA to prevent manifestation of Parkinson disease: a preclinical study using a primate model. Open Gene Ther. J. 2, 38–44 (2009)10.2174/1875037000902010038Search in Google Scholar

Koike H., Morishita R., Iguchi S., Aoki M., Matsumoto K., Nakamura T., Yokoyama C., Tanabe T., Ogihara T., Kaneda Y.: Enhanced angiogenesis and improvement of neuropathy by cotransfection of human hepatocyte growth factor and prostacyclin synthase gene. FASEB J. 17, 779–781 (2003)10.1096/fj.02-0754fje12586736Search in Google Scholar

Kosovac D., Wild J., Ludwig C., Meissner S., Bauer A.P., Wagner R.: Minimal doses of a sequence-optimized transgene mediate high-level and long-term EPO expression in vivo: challenging CpG-free gene design. Gene Ther. 18, 189–198 (2011)10.1038/gt.2010.13420944679Search in Google Scholar

Krieg A.M.: CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002)10.1146/annurev.immunol.20.100301.06484211861616Search in Google Scholar

Krieg A.M., Wu T., Weeratna R., Efler S.M., Love-Homan L., Yang L., Yi A.K., Short D., Davis H.L.: Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc. Natl. Acad. Sci. USA, 95, 12631–12636 (1998)10.1073/pnas.95.21.12631228829770537Search in Google Scholar

Krieg A.M., Yi A.K., Matson S., Waldschmidt T.J., Bishop G.A., Teasdale R., Koretzky G.A., Klinman D.M.: CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 374, 6546–6549 (1995)10.1038/374546a07700380Search in Google Scholar

Kukuła K., Rużyłło W. i wsp.: Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am. Heart J. 161, 581–589 (2011)Search in Google Scholar

Lara A.R., Ramirez O.T.: Plasmid DNA production for therapeutic applications. Methods Mol. Biol. 824, 271–303 (2012)Search in Google Scholar

Larsen M.D., Griesenbach U., Goussard S., Gruenert D.C., Geddes D.M., Scheule R.K., Cheng S.H., Courvalin P., Grillot-Courvalin C., Alton E.W.: Bactofection of lung epithelial cells in vitro and in vivo using a genetically modified Escherichia coli. Gene Ther. 15, 434–442 (2008)10.1038/sj.gt.3303090372539618317498Search in Google Scholar

Lechardeur D., Sohn K.-J., Haardt M., Joshi P.B., Monck M., Graham R.W., Beatty B., Squire J., O’Brodovich H., Lukacs G.L.: Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497 (1999)10.1038/sj.gt.330086710476208Search in Google Scholar

Loessner H., Endmann A., Leschner S., Westphal K., Rohde M., Miloud T., Hämmerling G., Neuhaus K., Weiss S.: Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of L-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol. 9, 1529–1537 (2007)10.1111/j.1462-5822.2007.00890.x17298393Search in Google Scholar

Madeira C., Rodrigues C.A., Reis M.S., Ferreira F.F., Correia R.E., Diogo M.M., Cabral J.M.: Nonviral gene delivery to neural stem cells with minicircles by microporation. Biomacromolecules, 14, 1379–1387 (2013)10.1021/bm400015b23514247Search in Google Scholar

Magnusson T., Haase R., Schleef M., Wagner E., Ogris M. Susteined, high transgene expression in liver with plasmid vectors using optimized promoter-enhanced combinations. J. Gene Med. 13, 382–391 (2011)10.1002/jgm.158521721074Search in Google Scholar

Makino H., Aoki M., Hashiya N., Yamasaki K., Azuma J., Sawa Y., Kaneda Y., Ogihara T., Morishita R.: Long-term follow-up evaluation of results from clinical trial using hepatocyte growth factor gene to treat severe peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 32, 2503–2509 (2012)10.1161/ATVBAHA.111.24463222904270Search in Google Scholar

Marshall W.G., Boone B.A., Burgos J.D., Gografe S.I., Baldwin M.K., Danielson M.L., Larson M.J., Caretto D.R., Cruz Y., Ferraro B., Heller L.C., Ugen K.E., Jaroszeski M.J., Heller R.: Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression. Gene Ther. 17, 419–423 (2010)10.1038/gt.2009.153313821119956270Search in Google Scholar

Miao C.H., Thompson A.R., Loeb K., Ye X.: Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol. Therapy, 3, 947–957 (2001)Search in Google Scholar

Mitsui M., Nishikawa M., Zang L., Ando M., Hattori K., Takahashi Y., Watanabe Y., Takakura Y.: Effect of the content of unmethylated CpG dinucleotides in plasmid DNA on the sustainability of transgene expression. J. Gene Med. 11, 435–443 (2009)10.1002/jgm.131719291673Search in Google Scholar

Nafissi N., Alqawlaq S., Lee E.A., Foldvari M., Spagnuolo P.A., Slavcev R.A.: DNA ministrings: highly safe and effective gene delivery vectors. Mol. Ther. Nucleic Acids, DOI: 10.1038/mtna. 2014.16 (2014)Search in Google Scholar

Nafissi N., Foldvari M.: Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools. Front. Neurosci. 9, 355 DOI: 10.3389/fnins.2015.00355 (2015)10.3389/fnins.2015.00355460424526528114Search in Google Scholar

Nafissi N., Slavcev R.: Bacteriophage recombination systems and biotechnical applications. Appl. Microbiol. Biotechnol. 98, 2841–2851 (2014)Search in Google Scholar

Oliveira P.H., Mairhofer J.: Marker-free plasmids for biotechnological applications-implications and perspectives. Trends Biotechnol. 31, 539–547 (2013)10.1016/j.tibtech.2013.06.00123830144Search in Google Scholar

Palffy R., Hodosy J., Behuliak M., Resko P., Radvansky J., Celec P.: Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther. 13, 101–105 (2006)10.1038/sj.gt.330263516163379Search in Google Scholar

Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F.: Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013)10.1038/nprot.2013.143396986024157548Search in Google Scholar

Rauschhuber C., Noske N., Ehrhardt A.: New insights into stability of recombinant adenovirus vector genomes in mammalian cells. Eur. J. Cell Biol. 91, 2–9 (2012)Search in Google Scholar

Reyes-Sandoval A., Ertl H.C.: CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol. Ther. 9, 249–261 (2004)Search in Google Scholar

Ropper A.H., Gorson K.C., Gooch C.L., Weinberg D.H., Pieczek A., Ware J.H., Kershen J., Rogers A., Simovic D., Schratz-berger P., Kirchmair R., Losordo D.: Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial. Ann. Neurol. 65, 386–393 (2009)10.1002/ana.21675470901219399887Search in Google Scholar

Rosazza C., Buntz A., Ries T., Woll D., Zumbusch A., Rols MP.: Intracellular tracking of single-plasmid DNA particles after delivery by electroporation. Mol. Therapy, 21, 2217–2226 (2013)Search in Google Scholar

Rosenberg S.A., Aebersold P., Cornetta, K., Kasid, A., Morgan R.A., Moen R., Karson E.M., Lotze M.T., Yang J.C., Topalian S.L., Merino M.J., Culver K., Miller A.D., Blaese R.M., Anderson W.F.: Gene transfer into humans — immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323, 570–578 (1990)Search in Google Scholar

Saeed M., Martin A., Ursell P., Do L., Bucknor M., Higgins C.B., Saloner D.: MR assessment of myocardial perfusion, viability, and function after intramyocardial transfer of VM202, a new plasmid human hepatocyte growth factor in ischemic swine myocardium. Radiology, 2489, 107–118 (2008)10.1148/radiol.2483071579279808918682582Search in Google Scholar

Saitoh S-I., Miyake K.: Regulatory molecules required for nucleotide-sensing Toll-like receptors. Immunol. Rev. 227, 32–43 (2009)Search in Google Scholar

Sanchez-Romero M.A., Cota I., Casadesus J.: DNA methylation in bacteria: from the methyl group to the methylome. Curr. Opin. Microbiol. 25, 9–16 (2015)Search in Google Scholar

Smorawinska M., Szuplewska M., Zaleski P., Wawrzyniak P., Maj A., Plucienniczak A., Bartosik D.: Mobilizable narrow host range plasmid as natural suicide vectors enabling horizontal gene transfer among distantly related bacterial species. FEMS Microbiol. Lett. 326, 76–82 (2012)Search in Google Scholar

Spanggaard I., Gehl J. I wsp.: Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum. Gene Ther.Clin. Dev. 24, 99–107 (2013)Search in Google Scholar

Staworzyńska M.J., Stachowiak R., Bielecki J.: Zastosowanie wektorów bakteryjnych w biologii molekularnej i w medycynie. Post. Mikrobiol. 50, 3–16 (2011)Search in Google Scholar

Stuchbury G., Münch G.: Optimizing the generation of stable neuronal cell lines via pre-transfection restriction enzyme digestion of plasmid DNA. Cytotechnology, 62, 189–194 (2010)10.1007/s10616-010-9273-1293290220424915Search in Google Scholar

Takahashi Y., Nishikawa M., Takakura Y.: Development of safe and effective nonviral gene therapy by eliminating CpG motifs from plasmid DNA vector. Front. Biosci. 4, 133–141 (2012)Search in Google Scholar

Taniyama Y., Azuma J., Kunugiza Y., Iekushi K., Rakugi H., Morishita R.: Therapeutic option of plasmid-DNA based gene transfer. Curr. Top. Med.Chem. 12, 1630–1637 (2012)Search in Google Scholar

Thomas C.E., Ehrhardt A., Kay M.A.: Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358 (2003)Search in Google Scholar

Tokunaga T., Suganuma T. i wsp.: Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J. Natl. Cancer. Inst. 72, 955–962 (1984)Search in Google Scholar

Tomizawa M., Shinozaki F., Motoyoshi S., Sugiyama T., Yamamoto S., Sueishi M.: Sonoporation: gene transfer using ultrasound. World J. Methodol. 3, 39–44 (2013)Search in Google Scholar

Tros de Ilarduya C., Sun Y., Düzgüneş N.: Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 40, 159–170 (2010)Search in Google Scholar

U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research (FDA): Guidance for Human Somatic Cell Therapy and Gene Therapy. (1998)Search in Google Scholar

Vandermeulen G., Marie C., Scherman C., Preat V.: New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol. Therapy, 19, 1942–1949 (2011)Search in Google Scholar

Vaughan E.E., Geiger R.C., Miller A.M., Loh-Marley P.L., Suzuki T., Miyata N., Dean D. A.: Microtubule acetylation through HDAC6 inhibition results in increased transfection efficiency. Mol. Ther. 16, 1841–1847 (2008)Search in Google Scholar

Villate-Beitia I., Puras G., Zarate J., Agirre M., Ojeda E., Pedraz J.L.: First insights into non-invasive administration routes for non-viral gene therapy (w) Gene Therapy – Principles and Challenges, red. D. Hashad, InTech, Rijeka, 2015, s. 145–17710.5772/61060Search in Google Scholar

von Groll A., Levin Y., Barbosa M.C., Ravazzolo A.P.: Linear DNA Low Efficiency Transfection by Liposome Can Be Improved by the Use of Cationic Lipid as Charge Neutralizer. Biotechnol. Prog. 22, 1220–1224 (2006)Search in Google Scholar

Wang W., Li W., Ma N., Steinhoff G.: Non-viral gene delivery methods. Curr. Pharm. Biotechnol. 14, 46–60 (2013)Search in Google Scholar

WHO Expert Committee on Biological Standardization, 66th Report, Annex 2. WHO Press, Geneva, 2015, s. 93–130Search in Google Scholar

Wirth T., Parker N., Yla-Herttuala S.: History of gene theraphy. Gene, 525, 162–169 (2013)10.1016/j.gene.2013.03.13723618815Search in Google Scholar

Wolff J.A., Ludtke J., Acsadi G., Williams P., Jani A.: Long-term persistence and plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1, 363–369 (1992)Search in Google Scholar

Wolff J.A., Malone R.W., Williams P., Chong W., Acsadi G., Jani A., Felgner P.L.: Direct gene transfer into mouse muscle in vivo. Science, 247, 1465–1468 (1990)10.1126/science.16909181690918Search in Google Scholar

Wooddell C.I., Subbotin V.M., Sebestyén M.G., Griffin J.B., Zhang G., Schleef M., Braun S., Huss T.,Wolff J.A.: Muscle damage after delivery of naked plasmid DNA into skeletal muscles is batch dependent. Human Gene Therapy, 22, 225–235 (2011)10.1089/hum.2010.11320942645Search in Google Scholar

Wright O., Stan G-B., Ellis T.: Building-in biosafety for synthetic biology. Microbiology, 159, 1221–1235 (2013)10.1099/mic.0.066308-023519158Search in Google Scholar

Yew N.S., Zhao H., Przybylska M., Wu I-H., Tousignant J. D., Scheule R.K., Cheng S, H. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol. Therapy, 5, 731–738 (2002)Search in Google Scholar

Yew N.S., Zhao H., Wu H-I., Song A., Tousignant J.D., Przybylska M., Cheng S.H.: Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol. Therapy, 1, 255–262 (2000)Search in Google Scholar

Zhang G., Song Y.K., Liu D.: Long-term expression of human alpha 1-antitrypsin gene in mouse liver achived by intravenous administration of plasmid DNA using hydrodynamics-based procedure. Gene Ther. 7, 1344–1349 (2000)10.1038/sj.gt.330122910918507Search in Google Scholar

Zhang H.Y., Sun S.H., Guo Y.J., Chen Z.H., Huang L., Gao Y.J., Wan B., Zhu W.J., Xu G.X., Wang J.J.: Tissue distribution of a plasmid DNA containing epitopes of foot-and-mouth disease virus in mice. Vaccine, 23, 5632–5640 (2005)10.1016/j.vaccine.2005.06.02916125283Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo