INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Machida M, Sun SJ, Oguma E, Kayama F. High bone matrix turnover predicts blood levels of lead among perimenopausal women. Environ Res 2009;109(7):880-6.10.1016/j.envres.2009.06.00519595303 Search in Google Scholar

2. Mani MS, Kabekkodu SP, Joshi MB, Dsouza HS. Ecogenetics of lead toxicity and its influence on risk assessment. Hum Exp Toxicol 2019;38(9):1031-59.10.1177/096032711985125331117811 Search in Google Scholar

3. Korbecki J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Lead (Pb) in the tissues of Anatidae, Ardeidae, Sternidae and Laridae of the Northern Hemisphere: A review of environmental studies. Environ Sci Pollut Res Int 2019;26(13):12631-47.10.1007/s11356-019-04799-7647864230895550 Search in Google Scholar

4. Occupational Safety and Health Administration. Lead. https://www.osha.gov/lead (21.12.2021). Search in Google Scholar

5. Xia D, Yu X, Liao S, Shao Q, Mou H, Ma W. Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. J Ethnopharmacol 2010;130(2):414-20.10.1016/j.jep.2010.05.02520580805 Search in Google Scholar

6. Caylak E, Aytekin M, Halifeoglu I. Antioxidant effect of methionine, alpha-lipoic acid, N-acetylcysteine and homocysteine on lead-induced oxidative stress to erythrocytes in rats. Exp Toxicol Pathol 2008;60(4-5):289-94.10.1016/j.etp.2007.11.00418407480 Search in Google Scholar

7. Martynowicz H, Andrzejak R, Mędraś M. The influence on lead on testis function. Med Pr 2005;56(6):495-500. Search in Google Scholar

8. Work Group of the Advisory Committee on Childhood Lead Poisoning Prevention. A review of evidence of health effects of blood lead levels <10 µg/dl in children. Atlanta: CDC; 2004. www.cdc.gov/nceh/lead/ACCLPP/meetingMinutes/lessThan10MtgMAR04.pdf (26.01.2022). Search in Google Scholar

9. Environmental Health Criteria 165. Inorganic lead. Geneva: World Health Organization; 1995. Search in Google Scholar

10. The Advisory Committee on Childhood Lead Poisoning Prevention of the Centers for Disease Control and Prevention. Low level lead exposure harms children: a renewed call for primary prevention. CDC; 2012. http://www.cdc.gov/nceh/lead/acclpp/final_document_030712.pdf (26.01.2022). Search in Google Scholar

11. Centers for Disease Control and Prevention. Preventing lead poisoning in young children. Atlanta: CDC; 2005. www.cdc.gov/nceh/lead/publications/prevleadpoisoning.pdf (26.01.2022). Search in Google Scholar

12. CDC. Interpreting and managing blood lead levels <10 μg/dL in children and reducing childhood exposures to lead: recommendations of CDC’s Advisory Committee on Childhood Lead Poisoning Prevention. www.cdc.gov/mmwr/preview/mmwrhtml/rr5608a1.htm (26.01.2022). Search in Google Scholar

13. Koller K, Brown T, Spurgeon A, Levy L. Recent developments in low-level lead exposure and intellectual impairment in children. Environ Health Perspect 2004;112(9):987-94.10.1289/ehp.6941124719115198918 Search in Google Scholar

14. Gąssowska M, Baranowska-Bosiacka I, Moczydłowska J, Tarnowski M, Pilutin, A, Gutowska I, et al. Perinatal exposure to lead (Pb) promotes Tau phosphorylation in the rat brain in a GSK-3β and CDK5 dependent manner: relevance to neurological disorders. Toxicology 2016;347-349:17-28. doi: 10.1016/j.tox.2016.03.002.27012722 Open DOISearch in Google Scholar

15. Navarro-Moreno LG, Quintanar-Escorza MA, González S, Mondragón R, Cerbón-Solorzáno J, Valdés J, et al. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells. Toxicol In Vitro 2009;23(7):1298-304. doi: 10.1016/j.tiv.2009.07.020.19619637 Open DOISearch in Google Scholar

16. Kales SN, Christophi CA, Saper RB. Hematopoietic toxicity from lead-containing Ayurvedic medications. Med Sci Monit 2007;13(7):CR295-8. Search in Google Scholar

17. Creemers L, Van den Driessche M, Moens M, Van Olmen A, Verschaeren J, T’Syen M, et al. Safety of alternative medicines reconsidered: Lead-induced anaemia caused by an indian ayurvedic formulation. Acta Clin Belg 2008;63(1):42-5.10.1179/acb.2008.00718386765 Search in Google Scholar

18. Queirolo EI, Ettinger AS, Stoltzfus RJ, Kordas K. Association of anemia, child and family characteristics with elevated blood lead concentrations in preschool children from Montevideo, Uruguay. Arch Environ Occup Health 2010;65(2):94-100.10.1080/1933824090339031320439228 Search in Google Scholar

19. Nemsadze K, Sanikidze T, Ratiani L, Gabunia L, Sharashenidze T. Mechanisms of lead-induced poisoning. Georgian Med News 2009;(172-173):92-6. Search in Google Scholar

20. El-Nekeety AA, El-Kady AA, Soliman MS, Hassan NS, Abdel-Wahhab MA. Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol 2009;47(9):2209-15. doi: 10.1016/j.fct.2009.06.019.19531368 Open DOISearch in Google Scholar

21. Baranowska-Bosiacka I, Gutowska I, Marchlewicz M, Marchetti C, Kurzawski M, Dziedziejko V, et al. Disrupted pro- and antioxidative balance as a mechanism of neurotoxicity induced by perinatal exposure to lead. Brain Res 2012;1435:56-71.10.1016/j.brainres.2011.11.06222197700 Search in Google Scholar

22. Baranowska-Bosiacka I, Falkowska A, Gutowska I, Gąssowska M, Kolasa-Wołosiuk A, Tarnowski M, et al. Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure. Toxicology 2017;390:146-58. doi: 10.1016/j. tox.2017.09.007. Open DOISearch in Google Scholar

23. Gąssowska M, Baranowska-Bosiacka I, Moczydłowska J, Frontczak-Baniewicz M, Gewartowska M, Strużyńska L, et al. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring. Toxicology 2016;373:13-29. doi: 10.1016/j.tox.2016.10.014.27974193 Open DOISearch in Google Scholar

24. Casado MF, Cecchini AL, Simão AN, Oliveira RD, Cecchini R. Free radical-mediated pre-hemolytic injury in human red blood cells subjected to lead acetate as evaluated by chemiluminescence. Food Chem Toxicol 2007:45(6):945-52. doi: 10.1016/j.fct.2006.12.001.17250942 Open DOISearch in Google Scholar

25. Gautam P, Flora SJ. Oral supplementation of gossypin during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats. Nutrition 2010;26(5):563-70.10.1016/j.nut.2009.06.00819647414 Search in Google Scholar

26. Ryzhavskii BY, Lebed’ko OA, Belolyubskaya DS, Baranova SN. Long-term consequences of prenatal exposure to lead on brain development in rats. Neurosci Behav Physiol 2008;38(2):145-9. doi: 10.1007/s11055-008-0021-3.18197380 Open DOISearch in Google Scholar

27. Antonio-García MT, Massó-Gonzalez EL. Toxic effects of perinatal lead exposure on the brain of rats: Involvement of oxidative stress and the beneficial role of antioxidants. Food Chem Toxicol 2008;46(6):2089-95. doi: 10.1016/j.fct.2008.01.053.18417264 Open DOISearch in Google Scholar

28. Kosnett MJ, Wedeen RP, Rothenberg SJ, Hipkins KL, Materna BL, Schwartz BS, et al. Recommendations for medical management of adult lead exposure. Environ Health Perspect 2007;115(3):463-71. doi: 10.1289/ehp.9784.184993717431500 Open DOISearch in Google Scholar

29. El-Sayed IH, Lotfy M, El-Khawaga OA, Nasif WA, El-Shahat M. Prominent free radicals scavenging activity of tannic acid in lead-induced oxidative stress in experimental mice. Toxicol Ind Health 2006;22(4):157-63. doi: 10.1191/0748233706th256oa.16786837 Open DOISearch in Google Scholar

30. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res 2009;129(4):357-67. Search in Google Scholar

31. Famurewa AC, Ugwuja EI. Association of Blood and Seminal Plasma Cadmium and Lead Levels With Semen Quality in Non-Occupationally Exposed Infertile Men in Abakaliki, South East Nigeria. J Family Reprod Health 2017;11(2):97-103. Search in Google Scholar

32. Patrick L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 2006;11(2):114-27. Search in Google Scholar

33. Wirth JJ, Mijal RS. Adverse effects of low level heavy metal exposure on male reproductive function. Syst Biol Reprod Med 2010;56(2):147-67. doi: 10.3109/19396360903582216. Open DOISearch in Google Scholar

34. Sukhn C, Awwad J, Ghantous A, Zaatari G. Associations of semen quality with non-essential heavy metals in blood and seminal fluid: data from the Environment and Male Infertility (EMI) study in Lebanon. J Assist Reprod Genet 2018;35(9):1691-701.10.1007/s10815-018-1236-z Search in Google Scholar

35. Ommati MM, Jamshidzadeh A, Heidari R, Sun Z, Zamiri MJ, Khodaei F, et al. Carnosine and histidine supplementation blunt lead-induced reproductive toxicity through antioxidative and mitochondria-dependent mechanisms. Biol Trace Elem Res 2019;187(1):151-62. doi: 10.1007/s12011-018-1358-2. Open DOISearch in Google Scholar

36. Cooper TG. Interactions between epididymal secretions and spermatozoa. J Reprod Fertil Suppl 1998;53:119-36. Search in Google Scholar

37. Piasecka M, Rózewicka L, Laszczyńska M, Marchlewicz M. Electron-dense deposits in epididymal cells of rats chronically treated with lead acetate [Pb(II)]. Folia Histochem Cytobiol 1995;33(2):89-94. Search in Google Scholar

38. Marchlewicz M, Michalska T, Wiszniewska B. Detection of lead-induced oxidative stress in the rat epididymis by chemiluminescence. Chemo-sphere 2004;57(10):1553-62.10.1016/j.chemosphere.2004.08.102 Search in Google Scholar

39. Vigeh M, Smith DR, Hsu PC. How does lead induce male infertility? Iran J Reprod Med 2011;9(1):1-8. Search in Google Scholar

40. Wiszniewska B, Marchlewicz M, Piasecka M, Wenda-Rózewicka L, Swider- -al-Amawi M. Phospholipid content and lamellar structures in the epididymal epithelial cells of rats treated chronically with lead acetate [Pb(II)]. Folia Biol (Krakow) 1998;46(3-4):215-24. Search in Google Scholar

41. Shafiq-Ur-Rehman. Lead-induced regional lipid peroxidation in brain. Toxicol Lett 1984;21(3):333-7. doi: 10.1016/0378-4274(84)90093-6. Open DOISearch in Google Scholar

42. Shafiq-Ur-Rehman. Effect of lipid peroxidation, phospholipids composition, and methylation in erythrocyte of human. Biol Trace Elem Res 2013;154(3):433-9.10.1007/s12011-013-9745-123846836 Search in Google Scholar

43. Tramer F, Micali F, Sandri G, Bertoni A, Lenzi A, Gandini L, et al. Enzymatic and immunochemical evaluation of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in testes and epididymal spermatozoa of rats of different ages. Int J Androl 2002;25(2):72-83.10.1046/j.1365-2605.2002.00327.x11903656 Search in Google Scholar

44. Marchlewicz M, Wiszniewska B, Gonet B, Baranowska-Bosiacka I, Safranow K, Kolasa A, et al. Increased lipid peroxidation and ascorbic acid utilization in testis and epididymis of rats chronically exposed to lead. Biometals 2007;20(1):13-9. doi: 10.1007/s10534-006-9009-z.16699871 Open DOISearch in Google Scholar

45. Minter BE, Lowes DA, Webster NR, Galley HF. Differential effects of Mito-VitE, α-Tocopherol and Trolox on oxidative stress, mitochondrial function and inflammatory signalling pathways in endothelial cells cultured under conditions mimicking sepsis. Antioxidants (Basel) 2020;9(3):195. doi: 10.3390/antiox9030195.713936732110961 Open DOISearch in Google Scholar

46. Liu Q, Zhou Y, Duan R, Wei H, Jiang S, Peng J. Lower dietary n-6: n-3 ratio and high-dose vitamin E supplementation improve sperm morphology and oxidative stress in boars. Reprod Fertil Dev 2017;29(5):940-9. doi: 10.1071/RD15424.28442045 Open DOISearch in Google Scholar

47. Motemani M, Chamani M, Sharafi M, Masoudi R. Alpha-tocopherol improves frozen-thawed sperm quality by reducing hydrogen peroxide during cryopreservation of bull semen. SJAR 2017;15(1):e0401. doi: 10.5424/sjar/2017151-9761. Open DOISearch in Google Scholar

48. Molyneux CA, Glyn MC, Ward BJ. Oxidative stress and cardiac microvascular structure in ischemia and reperfusion: The protective effect of antioxidant vitamins. Microvasc Res 2002;64(2):265-77. doi: 10.1006/mvre.2002.2419. Open DOISearch in Google Scholar

49. Hong JH, Kim MJ, Park MR, Kwag OG, Lee IS, Byun BH, et al. Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clin Chim Acta 2004;340(1-2):107-15. doi: 10.1016/j.cccn.2003.10.003. Open DOISearch in Google Scholar

50. Sagach VF, Scrosati M, Fielding J, Rossoni G, Galli C, Visioli F. The water-soluble vitamin E analogue Trolox protects against ischaemia/reperfusion damage in vitro and ex vivo. A comparison with vitamin E. Pharmacol Res 2002;45(6):435-9. doi: 10.1006/phrs.2002.0993. Open DOISearch in Google Scholar

51. Ait Hamadouche N, Sadi N, Kharoubi O, Slimani M, Aoues A. The protective effect of vitamin E against genotoxicity of lead acetate intraperitoneal administration in male rat. Not Sci Biol 2013;5(4):12-9. doi: 10.15835/nsb549125. Open DOISearch in Google Scholar

52. Al-Masri SA. Effect of pumpkin oil and vitamin E on lead-induced testicular toxicity in male rats. J Anim Plant Sci 2015;25(1):72-7. Search in Google Scholar

53. Massaeli H, Sobrattee S, Pierce GN. The importance of lipid solubility in antioxidants and free radical generating systems for determining lipo-protein proxidation. Free Radic Biol Med 1999;26(11-12):1524-30. doi: 10.1016/s0891-5849(99)00018-0. Open DOISearch in Google Scholar

54. Hsu PC, Hsu CC, Liu MY, Chen LY, Guo YL. Lead-induced changes in spermatozoa function and metabolism. J Toxicol Environ Health A 1998;55(1):45-64.10.1080/009841098158610 Search in Google Scholar

55. Wang C, Zhang Y, Liang J, Shan G, Wang Y, Shi Q. Impacts of ascorbic acid and thiamine supplementation at different concentrations on lead toxicity in testis. Clin Chim Acta 2006;370(1-2):82-8. doi: 10.1016/j.cca.2006.01.023. Open DOISearch in Google Scholar

56. GBD 2017 Population and Fertility Collaborators. Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392(10159):1995-2051. doi: 10.1016/S0140-6736(18)32278-5. Open DOISearch in Google Scholar

57. Jensen CFS, Khan O, Nagras ZG, Sønksen J, Fode M, Østergren PB, et al. Male infertility problems of patients with strict sperm morphology between 5-14% may be missed with the current WHO guidelines. Scand J Urol 2018;52(5-6):427-31.10.1080/21681805.2018.154850330602328 Search in Google Scholar

58. Centers for Disease Control and Prevention. Interpreting and managing blood lead levels <10 µg/dL in children and reducing childhood exposures to lead: Recommendations of CDC’s Advisory Committee on Childhood Lead Poisoning Prevention. MMWR Recomm Rep 2007;56(RR08):1-16. www.cdc.gov/mmwr/preview/mmwrhtml/rr5608a1.htm (26.01.2022). Search in Google Scholar

59. Cornwall GA, Hann SR. Specialized gene expression in the epididymis. J Androl 1995;16(5):379-83. doi: 10.1002/j.1939-4640.1995.tb00548.x. Open DOISearch in Google Scholar

60. Epler KS, Ziegler RG, Craft NE. Liquid chromatographic method for the determination of carotenoids, retinoids and tocopherols in human serum and in food. J Chromatogr 1993;619(1):37-48. doi: 10.1016/0378-4347(93)80444-9. Open DOISearch in Google Scholar

61. Stachowska E, Wesołowska T, Olszewska M, Safranow K, Millo B, Domański L, et al. Elements of Mediterranean diet improve oxidative status in blood of kidney graft recipients. Br J Nutr 2005;93(3):345-52.10.1079/BJN20051374 Search in Google Scholar

62. Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Betler JG, et al. The selenoprotein GPX4 is essential for mouse development and protect from radiation and oxidative damage insults. Free Radic Biol Med 2003;34(4):496-502.10.1016/S0891-5849(02)01360-6 Search in Google Scholar

63. Baud O, Haynes RF, Wang H, Folkerth RD, Li J, Volpe JJ, et al. Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. Eur J Neurosci 2004;20(1):29-40.10.1111/j.0953-816X.2004.03451.x15245476 Search in Google Scholar

64. Conterato GMM, Augusti PR, Somacal S, Einsfeld L, Sobieski R, Torres JRV, et al. Effect of lead acetate on cytosolic thioredoxin reductase activity and oxidative stress parameters in rat kidneys. Basic Clin Pharmacol Toxicol 2007;101(2):96-100.10.1111/j.1742-7843.2007.00084.x17651309 Search in Google Scholar

65. Annabi Berrahal A, Nehdi A, Hajjaji N, Gharbi N, El-Fazâa S. Antioxidant enzymes activities and bilirubin level in adult rat treated with lead. C R Biol 2007;330(8):581-8.10.1016/j.crvi.2007.05.00717637439 Search in Google Scholar

66. Biswas NM, Ghosh P. Effect of lead on male gonadal activity in albino rats. Kathmandu Univ Med J (KUMJ) 2004;2(1):43-6. Search in Google Scholar

67. Rafique M, Khan N, Perveen K, Naqvi A. The effects of lead and zinc on the quality of semen of albino rats. J Coll Physicians Surg Pak 2009;19(8):510-3. Search in Google Scholar

68. Wahab OA, Princely AC, Oluwadamilare AA, Ore-Oluwapo DO, Blessing AO, Alfred EF. Clomiphene citrate ameliorated lead acetate-induced reproductive toxicity in male Wistar rats. JBRA Assist Reprod 2019;23(4):336-43. doi: 10.5935/1518-0557.20190038.679859531173495 Open DOISearch in Google Scholar

69. Chabory E, Damon C, Lenoir A, Henry-Berger J, Vernet P, Cadet R, et al. Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. J Anim Sci 2010;88(4):1321-31. doi: 10.2527/jas.2009-2583.20042549 Open DOISearch in Google Scholar

70. Mishra M, Acharya UR. Protective action of vitamins on the spermatogenesis in lead-treated Swiss mice. J Trace Elem Med Biol 2004;18(2):173-8. doi: 10.1016/j.jtemb.2004.03.007.15646264 Open DOISearch in Google Scholar

71. Kasperczyk S, Kasperczyk J, Ostałowska A, Zalejska-Fiolka J, Wielkoszyński T, Swietochowska E, et al. The role of the antioxidant enzymes in erythrocytes in the development of arterial hypertension among humans exposed to lead. Biol Trace Elem Res 2009;130(2):95-106. doi: 10.1007/s12011-009-8323-z.19183866 Open DOISearch in Google Scholar

72. Grover P, Rekhadevi PV, Danadevi K, Vuyyuri SB, Mahboob M, Rahman MF. Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 2010;213(2):99-106. doi: 10.1016/j.ijheh.2010.01.005.20153251 Open DOISearch in Google Scholar

73. Newairy AS, Abdou HM. Protective role of flax lignans against lead acetate induced oxidative damage and hyperlipidemia in rats. Food Chem Toxicol 2009;47(4):813-8.10.1016/j.fct.2009.01.01219271316 Search in Google Scholar

74. Yin ST, Tang ML, Su L, Chen L, Hu P, Wang HL, et al. Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology 2008;249(1):45-54.10.1016/j.tox.2008.04.00618499326 Search in Google Scholar

75. Prasanthi RP, Devi CB, Basha DC, Reddy NS, Reddy GR. Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. Int J Dev Neurosci 2010;28(2):161-7.10.1016/j.ijdevneu.2009.12.00220036325 Search in Google Scholar

76. Patil AJ, Bhagwat VR, Patil JA, Dongre NN, Ambekar JG, Jailkhani R, et al. Effect of lead (Pb) exposure on the activity of superoxide dismutase and catalase in battery manufacturing workers (BMW) of Western Maharashtra (India) with reference to heme biosynthesis. Int J Environ Res Public Health 2006;3(4):329-37. doi: 10.3390/ijerph2006030041.17159274 Open DOISearch in Google Scholar

eISSN:
2719-6313
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health