Accesso libero

On the triangular points within frame of the restricted three–body problem when both primaries are triaxial rigid bodies

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Introduction

Restricted three–body problem (RTBP) plays very important role in celestial mechanics and space science. [12, 15 and 23] are very good books in celestial mechanics which explains importance of RTBP in space dynamics. Classical RTBP is explained in detailed in [15]. [2, 3, 6, 8] have studied RTBP with different perturbations like solar radiation pressure, oblateness, air drug etc. With both primaries as point masses. [7] have studied numerical integration with Lie series in the case of RTBP.

It is well known that the classical planar restricted three body problem (CRTBP) possesses five liberation or stationary points. These points are known as Lagrangian points. Out of these five points three points are collinear which are unstable where as two points are triangular which are stable in nature. [1, 4, 5, 11] studied existence and stability of these Lagrangian points for the perturbed RTBP. Recently, [16, 17, 18-19] studied different family of periodic orbits and its stability using Poincaré surface section for perturbed RTBP. In recent times many perturbing forces i.e., oblateness and radiation forces of the primaries, Coriolis and centrifugal forces, variation of masses of the primaries and of the infinitesimal mass etc., have been included in the study of the restricted three body problem.

For the case, where the bigger primary is an oblate spheroid whose equatorial plane coincides with the plane of motion, [22] have studied the stability of the liberation points. A similar problem has been studied by [13]. [10] have studied existence and stability of the equilibrium points of the triaxial rigid body which is moving around another triaxial rigid body. [9] have studied the non-linear stability of triangular point L4 in the RTBP when the bigger primary is a triaxial rigid body with its equatorial plane coincident with the plane of motion.

[14] have studied the problem when the smaller primary is a triaxial rigid body. Also [20, 21] have studied the problem when both the primaries are triaxial rigid bodies in the case of stationary rotational motion (θi = ψi = φi = 0). In this paper we consider the restricted three body problem when both the primaries are triaxial rigid bodies in two cases of stationary rotational motion: (θi=ϕi=π2,ψi=0) $\left(\theta _{i} = \phi _{i} = \dfrac{\pi}{2}, \psi _{i} = 0 \right)$ and (θi=0,ψi+ϕi=π2) $\left(\theta _{i} =0, \psi _{i} +\phi _{i} =\dfrac{\pi}{2}\right)$ . Also for Euler’s angles (θi=π2,ϕi=ψi=0) $\left(\theta _{i} = \dfrac{\pi}{2}, \phi _{i} = \psi _{i} = 0 \right)$ , and (θi = 0, ψi + φi = 0) we can do similar kind of analysis from Case–I and Case–II respectively.

Equations of motion

We shall adopt the notation and terminology of [23]. As a consequence, the distance between the primaries does not change and is taken equal to one; the sum of masses of the primaries is also taken one. The unit of time is chosen so as to make the gravitational constant unity. Besides this the principle axes of the primaries are oriented to the synodic axes by Euler’s angels (θi, ψi, φi(i = 1, 2)). Since the axes are supposed to rotate with the same angular velocity as that of the rigid bodies and the bodies are moving around their center of mass without rotation, the Euler’s angles remain constant throughout the motion. Using dimensionless variables, the equations of motion of the infinitesimal mass m3 in a synodic coordinate system (x, y) are

x¨2ny˙=Ωx,y¨+2nx˙=Ωy.$$ \begin{equation} \begin{array}{rl} \ddot{x}- 2n\dot{y} = \dfrac{\partial \Omega}{\partial x},\\ \ddot{y}+ 2n\dot{x} = \dfrac{\partial \Omega}{\partial y}. \end{array} \end{equation} $$

where,

Ω=n22[(1μ)r12+μr22]+(1μ)r1+μr2+(1μ)2m1r13[I1+I2+I33I]+μ2m2r23[I1+I2+I33I],$$ \begin{equation} \begin{array}{rl} \Omega = &\dfrac{n^{2}}{2} \left[\left(1-\mu \right)r_{1}^{2} +\mu r_{2}^{2} \right]+\dfrac{\left(1-\mu \right)}{r_{1}}\\ &+\dfrac{\mu}{r_{2}} +\dfrac{\left(1-\mu \right)}{2m_{1} r_{1}^{3}} \left[I_{1} + I_{2} + I_{3} -3I \right]\\ &+\dfrac{\mu}{2m_{2} r_{2}^{3}} \left[I'_{1} +I'_{2} +I'_{3} -3I'\right], \end{array} \end{equation} $$r12=(xμ)2+y2,r22=(x+1μ)2+y2.$$ \begin{equation} \begin{array}{rl} r_{1}^{2} = (x - \mu)^{2} + y^{2},\\ r_{2}^{2} = (x + 1 - \mu)^{2} + y^{2}. \end{array} \end{equation} $$

Here μ is the ratio of mass of the smaller primary to the total mass of primaries and 0μ12 $0\le \mu \le \dfrac{1}{2}$ , i.e., μ = m2m1+m212 $\dfrac{m_{2}}{m_{1} +m_{2}} \le \dfrac{1}{2}$ with m1m2 being the masses of the primaries. I1, I2, I3 are the principal moments of inertia of the triaxial rigid body of mass m1 at its center of mass, with a, b, c as its axes. I is the moment of inertia about a line joining the center of the rigid body of mass m1 and the infinitesimal body of mass m3 and is given by

I=I1l12+I2m12+I3n12$$ \begin{equation} I=I_{1} l _{1}^{'2} + I_{2} m_{1}^{'2} + I_{3} n_{1}^{'2} \end{equation} $$

where l1, m1 and n1 are the directional cosines of the line respect to its principal axes. I1, I2, I3 are the principal moments of inertia of the triaxial rigid body of mass m2 at its center of mass, with a′, b′, c′ as its axes. I′ is the moment of inertia about a line joining the center of the rigid body of mass m2 and the infinitesimal body of mass m3 and is given by

I=I1l22+I2m22+I3n22$$ \begin{equation} I^{'} =I_{1}^{'} l _{2}^{'2} + I_{2}^{'} m_{2}^{'2} + I_{3}^{'} n_{2}^{'2} \end{equation} $$

where l2, m2 and n2 are the directional cosines of the line respect to its principal axes. We denote the unit vectors along the principle axes at p1(or p2) by i, j, k and the unit vectors parallel to the synodic axes by I, J, K with the help of Euler’s angles (θi, ψi, φi), (i = 1, 2).

I=a1ii^+b1ij^+c1ik^,J=a2ii^+b2ij^+c2ik^,K=a3ii^+b3ij^+c3ik^,$$ \begin{equation} \begin{array}{rl} & I=a_{1i}\hat{i}+ b_{1i}\hat{j} + c_{1i}\hat{k},\\ & J=a_{2i} \hat{i}+ b_{2i}\hat{j} + c_{2i}\hat{k},\\ & K=a_{3i} \hat{i}+ b_{3i}\hat{j} + c_{3i}\hat{k}, \end{array} \end{equation} $$

(i = 1, 2), where

a1i=sinϕisinψi+cosθicosϕicosψi,a2i=cosϕisinψi+cosθisinϕicosψi,a3i=sinθicosψi,b1i=sinϕicosψicosθicosϕisinψi,b2i=cosϕicosψicosθisinϕisinψi,b3i=sinθisinψi,c1i=sinθicosϕi,c2i=sinθisinϕi,c3i=cosθi,$$ \begin{equation} \begin{array}{rl} & a_{1i} = -\sin\phi _{i} \sin\psi _{i} + \cos\theta _{i} \cos\phi _{i} \cos\psi _{i},\\ & a_{2i} = \cos\phi _{i} \sin \psi _{i} + \cos\theta _{i} \sin\phi _{i} \cos\psi _{i},\\ & a_{3i} = -\sin\theta _{i} \cos\psi _{i}, \\ & b_{1i} = -\sin \phi _{i} \cos \psi _{i} -\cos \theta _{i} \cos\phi_{i} \sin\psi _{i}, \\ & b_{2i} = \cos\phi _{i} \cos\psi _{i} -\cos\theta _{i} \sin\phi _{i} \sin\psi _{i}, \\ & b_{3i} = \sin\theta _{i}\sin\psi _{i}, \\ & c_{1i} = \sin\theta _{i}\cos\phi _{i},\\ & c_{2i} = \sin\theta _{i}\sin\phi _{i}, \\ & c_{3i} =\cos\theta _{i}, \end{array} \end{equation} $$

(i = 1, 2).

The axes O(xyz) have been defined by [23]. Now, Ω in equation (2) can be written as

I=a1ii^+b1ij^+c1ik^,J=a2ii^+b2ij^+c2ik^,K=a3ii^+b3ij^+c3ik^,$$ \begin{equation} \begin{array}{rl} & I=a_{1i}\hat{i}+ b_{1i}\hat{j} + c_{1i}\hat{k},\\ & J=a_{2i} \hat{i}+ b_{2i}\hat{j} + c_{2i}\hat{k},\\ & K=a_{3i} \hat{i}+ b_{3i}\hat{j} + c_{3i}\hat{k}, \end{array} \end{equation} $$

Ω=n221μr12+μr22+1μr1+μr2+1μ2r132A1+A2+A331r12A2+A3a11xμ+a21y2+A1+A3b11xμ+b21y2+A2+A1c11xμ+c21y2+μ2r232A1+A2+A331r22A2+A3a12x+1μ+a22y2+A1+A3b12x+1μ+b22y2+A2+A1c12x+1μ+c22y2,$$ \begin{equation} \begin{array}{rl} \Omega =& \dfrac{n^{2}}{2} \left[\left(1-\mu \right)r_{1}^{2} +\mu r_{2}^{2} \right] +\dfrac{\left(1-\mu \right)}{r_{1} } +\dfrac{\mu }{r_{2} } \\ &+\dfrac{\left(1-\mu \right)}{2r_{1}^{3} } \left[2\left(A_{1} +A_{2} +A_{3} \right)-3\dfrac{1}{r_{1}^{2} } \left\{\begin{array}{l} {\left(A_{2} +A_{3} \right)\left(a_{11} \left(x-\mu \right)+a_{21} y\right)^{2} }\\ {+\left(A_{1} +A_{3} \right)\left(b_{11} \left(x-\mu \right)+b_{21} y\right)^{2} }\\ {+\left(A_{2} +A_{1} \right)\left(c_{11} \left(x-\mu \right)+c_{21} y\right)^{2} }\\ \end{array}\right\}\right]\\ &+\dfrac{\mu }{2r_{2}^{3} } \left[2\left(A'_{1} +A'_{2} +A'_{3} \right)-3\dfrac{1}{r_{2}^{2} } \left\{\begin{array}{l} {\left(A'_{2} +A'_{3} \right)\left(a_{12} \left(x+1-\mu \right)+a_{22} y\right)^{2} }\\ {+\left(A'_{1} +A'_{3} \right)\left(b_{12} \left(x+1-\mu \right)+b_{22} y\right)^{2} }\\ {+\left(A'_{2} +A'_{1} \right)\left(c_{12} \left(x+1-\mu \right)+c_{22} y\right)^{2} } \end{array}\right\}\right], \end{array} \end{equation} $$

where

A1=a25R2,A2=b25R2,A3=c25R2,$$ \begin{equation} A_{1} =\dfrac{a^{2}}{5R^{2}}\, , \quad A_{2} =\dfrac{b^{2}}{5R^{2}}\,, \quad A_{3} =\dfrac{c^{2}}{5R^{2}}, \end{equation} $$A1=a25R2,A2=b25R2,A3=c25R2,$$ \begin{equation} \begin{array}{rl} A_{1}^{'} =\dfrac{a^{'2}}{5R^{2}}\, , \quad A_{2}^{'} =\dfrac{b^{'2}}{5R^{2}}\,, \quad A_{3}^{'} =\dfrac{c^{'2}}{5R^{2}}, \end{array} \end{equation} $$

and R is the distance between the primaries. The mean motion, n is given by,

n2=1+32[2(A1+A2+A3)3a112(A2+A3)3b112(A1+A3)3c112(A2+A1)]+32[2(A1+A2+A3)3a122(A2+A3)3b122(A1+A3)3c122(A2+A1)].$$ \begin{equation} \begin{array}{rl} n^{2} =&1+\dfrac{3}{2} \left[2\left(A_{1} +A_{2} +A_{3} \right)-3a_{11}^{2} \left(A_{2} +A_{3} \right)-3b_{11}^{2} \left(A_{1} +A_{3} \right)-3c_{11}^{2} \left(A_{2} +A_{1} \right)\right] \\ &+\dfrac{3}{2} \left[2\left(A'_{1} +A'_{2} +A'_{3} \right)-3a_{12}^{2} \left(A'_{2} +A'_{3} \right)-3b_{12}^{2} \left(A'_{1} +A'_{3} \right)-3c_{12}^{2} \left(A'_{2} +A'_{1} \right)\right]. \end{array} \end{equation} $$

Locations of triangular points

Equation (1) permit an integral analogous to Jacobi integral

x˙2+y˙22Ω+C=0,f(x,y,x˙,y˙)=x˙2+y˙22Ω+C=0.$$ \begin{equation} \begin{array}{rl} &\dot{x}^{2}+\dot{y}^{2}-2\Omega + C =0, \\ & f \left(x, y,\dot{x}, \dot{y} \right) = \dot{x}^{2} +\dot{y}^{2}- 2\Omega + C = 0. \end{array} \end{equation} $$

The liberation points are the singularities of the manifold Therefore, these points are the solutions of the equations Ωx = 0, Ωy = 0 . We have Ωx and Ωy are established by [11, 12].

Case I: Euler’s angles are: θi=ϕi=π2,ψi=0 $\theta_{{\rm i}} =\phi_{{\rm i}} =\dfrac{\pi}{2},\psi_{{\rm i}} =0$

In the case of (θi=ϕi=π2,ψi=0) $\left(\theta _{i} =\phi _{i} =\dfrac{\pi}{2}, \psi _{i} =0\right)$ , with the help of (11) the components of the unit vectors in the directions of synodic coordinates are a3i = −1, b1i = −1, c2i = 1 and the other components are equal to zero.

Ωx=n2x(1μ)(xμ)r13μ(x+1μ)r233(1μ)(xμ)2r15[(2A2+4A3A1)5r12(A3(xμ)2+A2y2)]3(μ)(x+1μ)2r25[(2A2+4A3A1)5r22(A3(x+1μ)2+A2y2)]=0,Ωy=n2y(1μ)yr13μyr233(1μ)y2r15[(4A2+2A3A1)5r12(A3(xμ)2+A2y2)]3(μ)y2r25[(4A2+2A3A1)5r22(A3(x+1μ)2+A2y2)]=0,$$ \begin{equation} \begin{array}{rl} \Omega _{x} =& n^{2} x-\dfrac{\left(1-\mu \right)\left(x-\mu \right)}{r_{1}^{3}} -\dfrac{\mu \left(x+1-\mu \right)}{r_{2}^{3}} \\ &-\dfrac{3\left(1-\mu \right)\left(x-\mu \right)}{2r_{1}^{5}} \left[\left(2A_{2} +4A_{3} -A_{1} \right) -\dfrac{5}{r_{1}^{2}} \left(A_{3} \left(x-\mu \right)^{2} +A_{2} y^{2} \right)\right]\\ & -\dfrac{3\left(\mu \right)\left(x+1-\mu \right)}{2r_{2}^{5}} \left[\left(2A'_{2} +4A'_{3} -A'_{1} \right)-\dfrac{5}{r_{2}^{2}} \left(A'_{3} \left(x+1-\mu \right)^{2} +A'_{2} y^{2} \right)\right]=0,\\ \Omega _{y} &= n^{2} y-\dfrac{\left(1-\mu \right)y}{r_{1}^{3}} -\dfrac{\mu y}{r_{2}^{3}}\\ & -\dfrac{3\left(1-\mu \right)y}{2r_{1}^{5}} \left[\left(4A_{2} +2A_{3} -A_{1} \right)-\dfrac{5}{r_{1}^{2}} \left(A_{3} \left(x-\mu \right)^{2} +A_{2} y^{2} \right)\right] \\ &-\dfrac{3\left(\mu \right)y}{2r_{2}^{5}} \left[\left(4A'_{2} +2A'_{3} -A'_{1} \right)-\dfrac{5}{r_{2}^{2}} \left(A'_{3} \left(x+1-\mu \right)^{2} +A'_{2} y^{2} \right)\right]=0, \end{array} \end{equation} $$

where

n2=1+32[(2A2A1A3)]+32[(2A2A1A3)].$$ \begin{equation} n^{2} =1+\dfrac{3}{2} \left[\left(2A_{2} -A_{1} -A_{3} \right)\right] +\dfrac{3}{2} \left[\left(2A'_{2} - A'_{1} - A'_{3} \right)\right]. \end{equation} $$

We consider equation (14), Let the triaxial rigid body of mass m1, be nearly a sphere of radius R0, then

aR0+σ1,bR0+σ2,cR0+σ3,$$ \begin{eqnarray} \nonumber a\simeq R_{0} +\sigma _{1},\quad \nonumber b\simeq R_{0} +\sigma _{2},\quad c\simeq R_{0} +\sigma _{3}, \end{eqnarray} $$

whereσ1, σ2, σ3<< 1 . Therefore, using equation (10)

A1=λ1+μ1σ1,$$ \begin{equation} A_{1} =\lambda _{1} + \mu _{1} \sigma _{1}, \end{equation} $$

where,

λ1=R025R2,μ1=2R05R2.$$ \begin{eqnarray} \lambda _{1} =\dfrac{R_{0}^{2}}{5R^{2}},\quad \mu _{1} =\dfrac{2R_{0}}{5R^{2}}. \end{eqnarray} $$

Similarly, A2 = λ1 + μ1σ2, A3 = λ1 + μ1σ3 Again, let the triaxial rigid body of mass m2, be nearly a sphere of radius R0, using equation (11)

A1=λ1+μ1σ1$$ \begin{equation} A'_{1} =\lambda' _{1} + \mu' _{1} \sigma _{1} \end{equation} $$

where

λ1=R025R2,μ1=2R05R2$$ \begin{eqnarray} \nonumber \lambda '_{1} =\dfrac{R_{0}^{'2}}{5R^{2}}, \quad \mu '_{1} =\dfrac{2R'_{0}}{5R^{2}} \end{eqnarray} $$

Similarly A2 = λ1 + μ1σ2, A3 = λ1 + μ1σ3 where σ1, σ2, σ3<< 1. Therefore, equation (14) becomes,

Ωx=n2x(1μ)(xμ)r13μ(x+1μ)r233(1μ)μ1(xμ)2r15[(2σ2+4σ3σ1)5r12(σ3(xμ)2+σ2y2)]3(μ)μ1(x+1μ)2r25[(2σ2+4σ3σ1)5r22(σ3(x+1μ)2+σ2y2)]=0,Ωy=n2y(1μ)yr13μyr233(1μ)μ1y2r15[(4σ2+2σ3σ1)5r12(σ3(xμ)2+σ2y2)]3(μμ1)y2r25[(4σ2+2σ3σ1)5r22(σ3(x+1μ)2+σ2y2)]=0.$$ \begin{equation} \begin{array}{rl} \Omega _{x} &= n^{2} x-\dfrac{\left(1-\mu \right)\left(x-\mu \right)}{r_{1}^{3}} -\dfrac{\mu \left(x+1-\mu \right)}{r_{2}^{3}} \\ & -\dfrac{3\left(1-\mu \right)\mu _{1} \left(x-\mu \right)}{2r_{1}^{5}} \left[\left(2\sigma _{2} +4\sigma _{3} -\sigma _{1} \right)-\dfrac{5}{r_{1}^{2}} \left(\sigma _{3} \left(x-\mu \right)^{2} +\sigma _{2} y^{2} \right)\right] \\ &-\dfrac{3\left(\mu \right)\mu '_{1} \left(x+1-\mu \right)}{2r_{2}^{5}} \left[\left(2\sigma '_{2} +4\sigma '_{3} -\sigma '_{1} \right)-\dfrac{5}{r_{2}^{2}} \left(\sigma '_{3} \left(x+1-\mu \right)^{2} +\sigma '_{2} y^{2} \right)\right]=0, \\ \Omega_{y} &= n^{2} y-\dfrac{\left(1-\mu \right)y}{r_{1}^{3}} -\dfrac{\mu y}{r_{2}^{3}} \\ & -\dfrac{3\left(1-\mu \right)\mu _{1} y}{2r_{1}^{5}} \left[\left(4\sigma _{2} +2\sigma _{3} -\sigma _{1} \right)-\dfrac{5}{r_{1}^{2}} \left(\sigma _{3} \left(x-\mu \right)^{2} +\sigma _{2} y^{2} \right)\right] \\ &-\dfrac{3\left(\mu \mu '_{1} \right)y}{2r_{2}^{5}} \left[\left(4\sigma '_{2} +2\sigma '_{3} -\sigma '_{1} \right)-\dfrac{5}{r_{2}^{2}} \left(\sigma '_{3} \left(x+1-\mu \right)^{2} +\sigma '_{2} y^{2} \right)\right]=0. \end{array} \end{equation} $$

The mean motion n, given in equation (12), becomes

n2=1+32μ1[(2σ2σ1σ3)]+32μ1[(2σ2σ1σ3)].$$ \begin{equation} n^{2} =1+\frac{3}{2} \mu _{1} \left[\left(2\sigma _{2} -\sigma _{1} -\sigma _{3} \right)\right]+\frac{3}{2} \mu '_{1} \left[\left(2\sigma '_{2} -\sigma '_{1} -\sigma '_{3} \right)\right]. \end{equation} $$

The triangular points are the solutions of the equation (18) when (y≠0). Now we suppose that the solution for equation (18) when σi, σi(i = 1, 2, 3) are not equal to zero as

r1=1+α,r2=1+β.$$ \begin{eqnarray} \nonumber r_{1} =1+\alpha, \\ r_{2} =1+\beta. \end{eqnarray} $$

where α, β<< 1. Putting the values of r1 and r2 from equation (20) in equation (3), we get,

x=μ12+βα,y=±32[1+23(β+α)].$$ \begin{equation} \begin{array}{rl}& x = \mu -\dfrac{1}{2} +\beta -\alpha, \\ & y=\pm \dfrac{\sqrt{3}}{2} \left[1+\dfrac{2}{3}\left(\beta +\alpha \right)\right]. \end{array} \end{equation} $$

Putting the values of r1 and r2 from equation (20) and x, y from equation (18), rejecting higher order terms, we get

α=18[11μ1(σ2σ3)+4μ1(2σ2σ1σ3)+4μμ1(1μ)(σ3σ2)],β=18[4μ1(2σ2σ1σ3)+11μ1(σ2σ3)+4(1μ)μ1μ(σ3σ2)].$$ \begin{equation} \begin{array}{rl}& \alpha =-\dfrac{1}{8} \left[11\mu _{1} \left(\sigma _{2} -\sigma _{3} \right)+4 \mu '_{1} \left(2\sigma '_{2} -\sigma '_{1} -\sigma '_{3} \right)+\dfrac{4\mu \mu '_{1}}{\left(1-\mu \right)} \left(\sigma '_{3} -\sigma '_{2} \right)\right], \\ & \beta =-\dfrac{1}{8} \left[4\mu _{1} \left(2\sigma _{2} -\sigma _{1} -\sigma _{3} \right)+11\mu '_{1} \left(\sigma '_{2} -\sigma '_{3} \right)+\dfrac{4\left(1-\mu \right)\mu _{1}}{\mu} \left(\sigma _{3} -\sigma _{2} \right)\right]. \end{array} \end{equation} $$

Case II:Euler’s angles are: θi=0,ψi+ϕi=π2 $\theta_{{\rm i}} =0,\psi_{{\rm i}} +\phi_{{\rm i}} =\dfrac{\pi}{2}$

In the case of (θi=0,ψi+ϕi=π2) $\left(\theta _{i} =0, \psi _{i} +\phi _{i} = \dfrac{\pi}{2}\right)$ , the components of directions cosines are a2i = 1, b1i = −1, c3i = 1 while the other components are equal to zero.

Ωx=n2x(1μ)(xμ)r13μ(x+1μ)r233(1μ)(xμ)2r15[(2A2+4A1A3)5r12(A1(xμ)2+A2y2)]3(μ)(x+1μ)2r25[(2A2+4A1A3)5r22(A1(x+1μ)2+A2y2)]=0,Ωy=n2y(1μ)yr13μyr233(1μ)y2r15[(4A2+2A1A3)5r12(A1(xμ)2+A2y2)]3(μ)y2r25[(4A2+2A1A3)5r22(A1(x+1μ)2+A2y2)]=0.$$ \begin{equation} \begin{array}{rl} \Omega _{x} &= n^{2} x-\dfrac{\left(1-\mu \right)\left(x-\mu \right)}{r_{1}^{3}} \\ &-\dfrac{\mu \left(x+1-\mu \right)}{r_{2}^{3}} - \dfrac{3\left(1-\mu \right)\left(x-\mu \right)}{2r_{1}^{5}} \left[\left(2A_{2} +4A_{1} -A_{3} \right)-\dfrac{5}{r_{1}^{2}} \left(A_{1} \left(x-\mu \right)^{2} +A_{2} y^{2} \right)\right] \\ &- \dfrac{3\left(\mu \right)\left(x+1-\mu \right)}{2r_{2}^{5}} \left[\left(2A'_{2} +4A'_{1} -A'_{3} \right)-\dfrac{5}{r_{2}^{2}} \left(A'_{1} \left(x+1-\mu \right)^{2} +A'_{2} y^{2} \right)\right]= 0, \\ \Omega _{y} &=n^{2} y-\dfrac{\left(1-\mu \right)y}{r_{1}^{3}}\\ &-\dfrac{\mu y}{r_{2}^{3}} -\dfrac{3\left(1-\mu \right)y}{2r_{1}^{5}} \left[\left(4A_{2} +2A_{1} -A_{3} \right)-\dfrac{5}{r_{1}^{2}} \left(A_{1} \left(x-\mu \right)^{2} +A_{2} y^{2} \right)\right] \\ &-\dfrac{3\left(\mu \right)y}{2r_{2}^{5}} \left[\left(4A'_{2} +2A'_{1} -A'_{3} \right) -\dfrac{5}{r_{2}^{2}} \left(A'_{1} \left(x+1-\mu \right)^{2} +A'_{2} y^{2} \right)\right]=0. \end{array} \end{equation} $$

where,

n2=1+32[(2A2A1A3)]+32[(2A2A1A3)]$$ \begin{equation} n^{2} =1+\dfrac{3}{2} \left[\left(2A_{2} - A_{1} - A_{3} \right)\right] +\dfrac{3}{2} \left[\left(2A'_{2}- A'_{1}- A'_{3} \right)\right] \end{equation} $$

Therefore, equation (23) becomes

Ωx=n2x(1μ)(xμ)r13μ(x+1μ)r233(1μ)μ1(xμ)2r15[(2σ2+4σ1σ3)5r12(σ1(xμ)2+σ2y2)]3(μ)μ1(x+1μ)2r25[(2σ2+4σ1σ3)5r22(σ1(x+1μ)2+σ2y2)]=0,Ωy=n2y(1μ)yr13μyr233(1μ)μ1y2r15[(4σ2+2σ1σ3)5r12(σ1(xμ)2+σ2y2)]3(μμ1)y2r25[(4σ2+2σ1σ3)5r22(σ1(x+1μ)2+σ2y2)]=0.$$ \begin{equation} \begin{array}{rl}{} \Omega _{x} &=n^{2} x-\dfrac{\left(1-\mu \right)\left(x-\mu \right)}{r_{1}^{3}}\\ &-\dfrac{\mu \left(x+1-\mu \right)}{r_{2}^{3}} -\dfrac{3\left(1-\mu \right)\mu _{1} \left(x-\mu \right)}{2r_{1}^{5}} \left[\left(2\sigma _{2} +4\sigma _{1} -\sigma _{3} \right)-\frac{5}{r_{1}^{2}} \left(\sigma _{1} \left(x-\mu \right)^{2} +\sigma _{2} y^{2} \right)\right] \\ & -\dfrac{3\left(\mu \right)\mu '_{1} \left(x+1-\mu \right)}{2r_{2}^{5}} \left[\left(2\sigma '_{2} +4\sigma '_{1} -\sigma '_{3} \right)-\dfrac{5}{r_{2}^{2}} \left(\sigma '_{1} \left(x+1-\mu \right)^{2} +\sigma '_{2} y^{2} \right)\right]=0, \\ \Omega _{y} &= n^{2} y -\dfrac{\left(1-\mu \right)y}{r_{1}^{3}} -\dfrac{\mu y}{r_{2}^{3}}\\ &-\dfrac{3\left(1-\mu \right)\mu _{1} y}{2r_{1}^{5}} \left[\left(4\sigma _{2} +2\sigma _{1} -\sigma _{3} \right)-\dfrac{5}{r_{1}^{2}} \left(\sigma _{1} \left(x-\mu \right)^{2} +\sigma _{2} y^{2} \right)\right] \\ & -\dfrac{3\left(\mu \mu '_{1} \right)y}{2r_{2}^{5}} \left[\left(4\sigma '_{2} +2\sigma '_{1} -\sigma '_{3} \right)-\dfrac{5}{r_{2}^{2}} \left(\sigma '_{1} \left(x+1-\mu \right)^{2} +\sigma '_{2} y^{2} \right)\right]=0. \end{array} \end{equation} $$

The mean motion n, given in equation (12), becomes

n2=1+32μ1[(2σ2σ1σ3)]+32μ1[(2σ2σ1σ3)].$$ \begin{equation} n^{2} =1+\dfrac{3}{2} \mu _{1} \left[\left(2\sigma _{2} -\sigma _{1} -\sigma _{3} \right)\right]+\dfrac{3}{2} \mu '_{1} \left[\left(2\sigma '_{2} -\sigma '_{1} -\sigma '_{3} \right)\right]. \end{equation} $$

Also the triangular points are the solutions of the equation (25) when y≠0. Putting the values of r1 and r2 from equation (20) and x, y from equation (25), rejecting higher order terms, we get

α=18[11μ1(σ2σ1)+4μ1(2σ2σ1σ3)+4μμ1(1μ)(σ1σ2)],β=18[4μ1(2σ2σ3σ1)+11μ1(σ2σ1)+4(1μ)μ1μ(σ1σ2)].$$ \begin{equation} \begin{array}{rl} & \alpha =-\dfrac{1}{8} \left[11\mu _{1} \left(\sigma _{2} -\sigma _{1} \right)+4\mu '_{1} \left(2\sigma '_{2} -\sigma '_{1} -\sigma '_{3} \right)+\dfrac{4\mu \mu '_{1}}{\left(1-\mu \right)} \left(\sigma '_{1} -\sigma '_{2} \right)\right], \\ & \beta =-\dfrac{1}{8} \left[4\mu _{1} \left(2\sigma _{2} -\sigma _{3} -\sigma _{1} \right)+11\mu '_{1} \left(\sigma '_{2} -\sigma '_{1} \right)+\dfrac{4\left(1-\mu \right)\mu _{1}}{\mu} \left(\sigma _{1} -\sigma _{2} \right)\right]. \end{array} \end{equation} $$

Small oscillation around equilibrium solutions

The particular solutions may be obtained with any desired degree of numerical accuracy. The next question is the examination of orbits in the vicinity of these particular solutions. In general, let Xo, Yo be the coordinates correspond to any one of the particular solutions. They satisfy equations (1).

X¨02nY˙0=(ΩX)0,Y¨0+2nX˙=(ΩY)0.$$ \begin{equation} \begin{array}{rl} &\ddot X_{0} - 2n\dot Y_{0} =\left(\dfrac{\partial \Omega}{\partial X} \right)_{0}, \\ & \ddot Y_{0} + 2n \dot X_{} =\left(\dfrac{\partial \Omega}{\partial Y} \right)_{0}. \end{array} \end{equation} $$

In which the subscript o indicates that the particular derivatives of Ω must be evaluated for X = Xo, Y = Yo. If now X = X0 + ξ, Y = Y0 + η are substituted into the equations, there results,

ξ¨2nη˙=Ωxx0ξ+Ωxy0η,η¨+2nξ˙=Ωyx0ξ+Ωyy0η.$$ \begin{equation} \begin{array}{rl} & \ddot{\xi} - 2n \dot{\eta} = \Omega^0 _{xx} \xi +\Omega^0 _{xy} \eta, \\ & \ddot{\eta} + 2n \dot{\xi} = \Omega^0 _{yx}\xi +\Omega^0 _{yy} \eta. \end{array} \end{equation} $$

The super script of second partial derivatives of Ω refers to their values at X = X0 and Y = Y0. Specific numerical values may be obtained for any of the particular solutions. Let a solution of equations (29) be

ξ=Aexp(λt),η=Bexp(λt).$$ \begin{equation} \begin{array}{rl} &\xi =A \exp \left(\lambda t\right),\\ &\eta = B \exp \left(\lambda t\right). \end{array} \end{equation} $$

Substituting (30) into (29) gives for the equations that must be satisfied by the coefficients A and B

λ4+(4n2Ωxx0Ωyy0)λ2+Ωxx0Ωyy0(Ωxy0)2=0$$ \begin{equation} \lambda ^{4} +\left(4n^{2} -\Omega^0_{xx} -\Omega^0_{yy} \right)\lambda ^{2} +\Omega^0_{xx} \Omega^0_{yy} -(\Omega^0_{xy})^{2} =0 \end{equation} $$

The character of the solution of the differential equations depends on the character of the solution for λ2 from this quadratic equation. The solution is stable only if the quadratic has two unequal negative roots for λ2 . Now, we consider two cases of stationary rotational motion of the primaries.

The stability conditions of motion around triangular points
The stability conditions of case-I

From equation (30) we can easily obtain the stability conditions of L4 and L5. The triangular points of L4 and L5 are stable if the following conditions be satisfied (λi is pure imaginary)

Ωxx0+Ωyy0<4n2,Ωxx0Ωyy0>(Ωxy0)2,(4n2Ωxx0Ωyy0)2>4(Ωxx0Ωyy0(Ωxy0)2),$$ \begin{equation} \begin{array}{rl} & \Omega _{xx}^{0} +\Omega _{yy}^{0}\lt 4n^{2}, \\ & \Omega _{xx}^{0} \Omega _{yy}^{0}\gt (\Omega _{xy}^{0})^2, \\ &\left(4n^{2} -\Omega _{xx}^{0} -\Omega _{yy}^{0} \right)^{2} \gt 4\left(\Omega _{xx}^{0} \Omega _{yy}^{0} -(\Omega _{xy}^{0})^2 \right), \end{array} \end{equation} $$

where Ωxx0 $\Omega _{xx}^{0}$ , Ωyy0 $\Omega _{yy}^{0}$ and Ωxy0 $\Omega _{xy}^{0}$ are defined at L4 and L5 when the primaries are triaxial rigid bodies as,

Ωxx0=n214(1μ)(19α+12β)14(μ)(19β+12α)+332(1μ)μ1(41σ337σ24σ1)+332(μ)μ1(41σ337σ24σ1),Ωyy0=n2+14(1μ)(521α+12β)+14(μ)(521β+12α)+332(1μ)μ1(3σ3+41σ244σ1)+332(μ)μ1(3σ3+41σ244σ1),Ωxy0=(1μ)[(13α)34(7α+4β3)]μ[(13β)34(34α7β)]32(1μ)μ1(1±534)(2σ2+4σ3σ1)+158(1μ1)μ[(1±734)(3σ2+σ3)23σ2]32(μ)μ1(1534)(2σ2+4σ3σ1)+158(μ1)μ[(1734)(3σ2+σ3)±23σ2].$$ \begin{equation} \begin{array}{rl} \Omega _{xx}^{0} &= n^{2} -\dfrac{1}{4} \left(1-\mu \right)\left(1-9\alpha +12\beta \right)-\dfrac{1}{4} \left(\mu \right)\left(1-9\beta +12\alpha \right) \\ & +\dfrac{3}{32} \left(1-\mu \right)\mu _{1} \left(41\sigma _{3} -37\sigma _{2} -4\sigma _{1} \right) +\dfrac{3}{32} \left(\mu \right)\mu '_{1} \left(41\sigma '_{3} -37\sigma '_{2} -4\sigma '_{1} \right), \\ \Omega _{yy}^{0}& = n^{2} +\dfrac{1}{4} \left(1-\mu \right)\left(5-21\alpha +12\beta \right)+\dfrac{1}{4} \left(\mu \right)\left(5-21\beta +12\alpha \right) \\ & +\dfrac{3}{32} \left(1-\mu \right)\mu _{1} \left(3\sigma _{3} +41\sigma _{2} -44\sigma _{1} \right) +\dfrac{3}{32} \left(\mu \right)\mu '_{1} \left(3\sigma '_{3} +41\sigma '_{2} -44\sigma '_{1} \right),\\ \Omega _{xy}^{0} &= -\left(1-\mu \right)\left[\left(1-3\alpha \right)\mp \dfrac{\sqrt{3}}{4} \left(7\alpha +4\beta -3\right)\right]-\mu \left[\left(1-3\beta \right)\mp \dfrac{\sqrt{3}}{4} \left(3-4\alpha -7\beta \right)\right] \\ & -\dfrac{3}{2} \left(1-\mu \right)\mu _{1} \left(1\pm \dfrac{5\sqrt{3}}{4} \right)\left(2\sigma _{2} +4\sigma _{3} -\sigma _{1} \right)+\dfrac{15}{8} \left(1-\mu _{1} \right)\mu \left[\left(1\pm \dfrac{7\sqrt{3}}{4} \right)\left(3\sigma _{2} +\sigma _{3} \right)\mp 2\sqrt{3} \sigma _{2} \right] \\ & -\dfrac{3}{2} \left(\mu \right)\mu '_{1} \left(1\mp \dfrac{5\sqrt{3}}{4} \right)\left(2\sigma '_{2} +4\sigma '_{3} -\sigma '_{1} \right)+\dfrac{15}{8} \left(\mu '_{1} \right)\mu \left[\left(1\mp \dfrac{7\sqrt{3}}{4} \right)\left(3\sigma '_{2} +\sigma '_{3} \right)\pm 2\sqrt{3} \sigma '_{2} \right]. \end{array} \end{equation} $$

where the upper sign denotes to L4 while the lower sign denotes to L5. By analyzing the inequality (32), the stability conditions are

Ωxx0Ωyy0>Ωxy02,(4n2Ωxx0Ωyy0)2>4(Ωxx0Ωyy0Ωxy02).$$ \begin{equation} \begin{array}{rl} & \Omega _{xx}^{0} \Omega _{yy}^{0} \gt \Omega _{xy}^{02}, \\ & \left(4n^{2} -\Omega _{xx}^{0} -\Omega _{yy}^{0} \right)^{2} \gt 4\left(\Omega _{xx}^{0} \Omega _{yy}^{0} -\Omega _{xy}^{02} \right). \end{array} \end{equation} $$

while the condition of unstable of these points is

4n2<Ωxx0+Ωyy0$$ \begin{equation} 4n^{2} \lt \Omega _{xx}^{0} +\Omega _{yy}^{0} \end{equation} $$

The stability conditions of case-II

In this case the values of Ωxx0 $\Omega _{xx}^{0}$ , Ωyy0 $\Omega _{yy}^{0}$ and Ωxy0 $\Omega _{xy}^{0}$ at the triangular points of L4 and L5 are given by

Ωxx0=n214(1μ)(19α+12β)14(μ)(19β+12α)+332(1μ)μ1(41σ137σ24σ3)+332(μ)μ1(41σ137σ24σ3)Ωyy0=n2+14(1μ)(521α+12β)+14(μ)(521β+12α)+332(1μ)μ1(3σ1+41σ244σ3)+332(μ)μ1(3σ1+41σ244σ3).Ωxy0=(1μ)[(13α)34(7α+4β3)]μ[(13β)34(34α7β)]32(1μ)μ1(1±534)(2σ2+4σ1σ3)+158(1μ1)μ[(1±734)(3σ2+σ1)23σ2]32(μ)μ1(1534)(2σ2+4σ1σ3)+158(μ1)μ[(1734)(3σ2+σ1)±23σ2].$$ \begin{equation} \begin{array}{rl} \Omega _{xx}^{0} &=n^{2} -\dfrac{1}{4} \left(1-\mu \right)\left(1-9\alpha +12\beta \right)-\dfrac{1}{4} \left(\mu \right)\left(1-9\beta +12\alpha \right) \\ & +\dfrac{3}{32} \left(1-\mu \right)\mu _{1} \left(41\sigma _{1} -37\sigma _{2} -4\sigma _{3} \right) +\dfrac{3}{32} \left(\mu \right)\mu '_{1} \left(41\sigma '_{1} -37\sigma '_{2} -4\sigma '_{3} \right) \\ \Omega _{yy}^{0} &= n^{2} +\dfrac{1}{4} \left(1-\mu \right)\left(5-21\alpha +12\beta \right)+\dfrac{1}{4} \left(\mu \right)\left(5-21\beta +12\alpha \right) \\ & +\dfrac{3}{32} \left(1-\mu \right)\mu _{1} \left(3\sigma _{1} +41\sigma _{2} -44\sigma _{3} \right) +\dfrac{3}{32} \left(\mu \right)\mu '_{1} \left(3\sigma '_{1} +41\sigma '_{2} -44\sigma '_{3} \right). \\ \Omega_{xy}^{0} &= -\left(1-\mu \right)\left[\left(1-3\alpha \right)\mp \dfrac{\sqrt{3}}{4} \left(7\alpha +4\beta -3\right)\right]-\mu \left[\left(1-3\beta \right)\mp \dfrac{\sqrt{3}}{4} \left(3-4\alpha -7\beta \right)\right] \\ & -\dfrac{3}{2} \left(1-\mu \right)\mu _{1} \left(1\pm \dfrac{5\sqrt{3}}{4} \right)\left(2\sigma _{2} +4\sigma _{1} -\sigma _{3} \right)+\dfrac{15}{8} \left(1-\mu _{1} \right)\mu \left[\left(1\pm \dfrac{7\sqrt{3}}{4} \right)\left(3\sigma _{2} +\sigma _{1} \right)\mp 2\sqrt{3} \sigma _{2} \right]\\ & -\dfrac{3}{2} \left(\mu \right)\mu '_{1} \left(1\mp \dfrac{5\sqrt{3}}{4} \right)\left(2\sigma '_{2} +4\sigma '_{1} -\sigma '_{3} \right)+\dfrac{15}{8} \left(\mu '_{1} \right)\mu \left[\left(1\mp \dfrac{7\sqrt{3}}{4} \right)\left(3\sigma '_{2} +\sigma '_{1} \right)\pm 2\sqrt{3} \sigma '_{2} \right]. \end{array} \end{equation} $$

again the upper sign denotes to L4 while the lower sign denotes to L5, and the conditions of stability and instability are also given by the stated conditions in (34) and (35).

Numerical solutions

To obtain numerical solution of the given system for equations of motion of infinitesimal mass, we will use Runge–Kutta–Gill method with constant interval. This method is correct of order 4. Before applying method, we are shifting location of both primaries towards positive x–axis. So, new location of bigger primary is at(x, y) = (−μ, 0) and that of smaller primary is at (1−μ, 0).

Since the standard Runge-Kutta–Gill fourth order method for first order differential equation = f(x, y) is as follows.

yn+1=yn+16[k1+(22)k2+(2+2)k3+k4].$$ \begin{equation} y_{n+1} = y_{n} + \dfrac{1}{6}\left[k_{1} + (2 -\sqrt{2})k_{2}+ (2 +\sqrt{2})k_{3} + k_{4}\right]. \end{equation} $$

where

k1=hf(xn,yn),k2=hf(xn+h2,yn+k12),k3=hf[xn+h2,yn+k12(1+2)+(1122)k2],k4=hf[xn+h,ynk222+(1+122)k3].$$ \begin{equation} \begin{array}{l} k_{1} = hf(x_{n}, y_{n}),\\ k_{2} = hf(x_{n}+\dfrac{h}{2}, y_{n}+\dfrac{k_{1}}{2}),\\ k_{3} = hf\left[x_{n}+\dfrac{h}{2}, y_{n}+ \dfrac{k_{1}}{2}(-1+\sqrt{2})+(1-\dfrac{1}{2}\sqrt{2})k_{2}\right],\\ k_{4} = hf\left[x_{n}+h, y_{n}- \dfrac{k_{2}}{2}\sqrt{2}+(1+\dfrac{1}{2}\sqrt{2})k_{3}\right]. \end{array} \end{equation} $$

Here, h is the step size. The system of equations (1) is second order ordinary differential equations. To convert equations (1) in to system of first order differential equations, consider, y1 = x, y2 = , y3 = y and y4 = . Thus, equations (1) can be written as,

y1˙=y2,y2˙=2ny4+n2y1(1μ)(y1+μ)r13μ(y1+μ1)1r231.5(1μ)(y1+μ)r15((2A2+4A3A1)5r12(A3((y1+μ)2)+A2y32))1.5μ(y1+μ1)r25((2A2+4A3A1)5r22(A3(y11+μ)2+A2y32)),y3˙=y4,y4˙=2ny2+n2y3(1μ)y3r13μy31r231.5(1μ)y3r15((4A2+2A3A1)(5r12)(A3((y1+μ)2)+A2y32))1.5μy3r24((4A2+2A3A1)(5r22(A3(y11+μ)2+A2y32))).$$ \begin{equation} \begin{array}{rl} &\dot{y_{1}} = y_{2},\\ &\dot{y_{2}} = 2ny_{4} + n^{2}y_{1} - \dfrac{(1-\mu)(y_{1} + \mu)}{r_{1}^{3}} - \mu (y_{1} + \mu -1)\left[\dfrac{1}{r_{2}^{3}}\right]\\ &\qquad -\dfrac{1.5(1-\mu)(y_{1}+\mu)}{r_{1}^{5}}((2A_2+4A_3- A_1)- \dfrac{5} {r_{1}^{2}} (A_3((y_{1}+ \mu)^2)+ A_2 y_{3}^2))\\ &\qquad-\dfrac{1.5 \mu (y_{1}+\mu-1)}{r_{2}^{5}} ((2{A_2}^{'}+4{A_3}^{'}-{A_1}^{'}) - \dfrac{5} {r_{2}^{2}} ({A_3}^{'} (y_{1}-1+\mu)^2 + {A_2}^{'}y_{3}^2)),\\ &\dot{y_{3}} = y_{4},\\ &\dot{y_{4}} = - 2ny_{2} + n^{2}y_{3} -\dfrac{(1-\mu)y_{3}}{r_{1}^{3}} - \mu y_{3}\left[\dfrac{1}{r_{2}^{3}}\right]\\ &\qquad-\dfrac{1.5(1-\mu)y_{3}}{r_{1}^{5}}((4A_2+2A_3-A_1)-(\dfrac{5}{r_{1}^{2}}) (A_3((y_{1}+\mu)^2)+A_2 y_{3}^2))\\ &\qquad-\dfrac{1.5 \mu y_{3}} {r_{2}^{4}} ((4{A_2}^{'}+2{A_3}^{'}-{A_1}^{'}) -(\dfrac{5}{r_{2}^{2}} ({A_3}^{'}(y_{1}-1+\mu)^2+{A_2}^{'} y_{3}^2))). \end{array} \end{equation} $$

We use Runge–Kutta–Gill fourth order method to integrate the system of first order differential equations. The algorithm for this method is as follows:

The system of equations are given by

y1.=f1(y1,y2,y3,y4),y2.=f2(y1,y2,y3,y4),y3.=f3(y1,y2,y3,y4),y4.=f4(y1,y2,y3,y4).$$ \begin{eqnarray*}\dot{y_{1}} = f_{1}(y_{1}, y_{2}, y_{3}, y_{4}), \\ \dot{y_{2}} = f_{2}(y_{1}, y_{2}, y_{3}, y_{4}),\\ \dot{y_{3}} = f_{3}(y_{1}, y_{2}, y_{3}, y_{4}),\\ \dot{y_{4}} = f_{4}(y_{1}, y_{2}, y_{3}, y_{4}). \end{eqnarray*} $$

Let h be the step size.

Evaluate the following quantity:

k1=hf1(y1,y2,y3,y4),l1=hf2(y1,y2,y3,y4),m1=hf3(y1,y2,y3,y4),n1=hf4(y1,y2,y3,y4).$$ \begin{equation*} \begin{array}{rl} & k_{1} = hf_{1}(y_{1}, y_{2}, y_{3}, y_{4}),\\ & l_{1} = hf_{2}(y_{1}, y_{2}, y_{3}, y_{4}), \\ & m_{1} = hf_{3}(y_{1}, y_{2}, y_{3}, y_{4}),\\ & n_{1} = hf_{4}(y_{1}, y_{2}, y_{3}, y_{4}). \end{array} \end{equation*} $$

Now, update y1, y2, y3 and y4 as

y1=y1+0.5k1,y2=y2+0.5l1,y3=y3+0.5m1,y4=y4+0.5n1.$$ \begin{equation*} \begin{array}{rl} & y_{1} = y_{1}+ 0.5 k_{1},\\ & y_{2} = y_{2}+ 0.5 l_{1},\\ & y_{3} = y_{3}+ 0.5 m_{1},\\ & y_{4} = y_{4}+ 0.5 n_{1}. \end{array} \end{equation*} $$

Evaluate the following quantity:

k2=hf1(y1,y2,y3,y4),l2=hf2(y1,y2,y3,y4),m2=hf3(y1,y2,y3,y4),n2=hf4(y1,y2,y3,y4).$$ \begin{equation*} \begin{array}{rl} &k_{2} = hf_{1}(y_{1}, y_{2}, y_{3}, y_{4}),\\ &l_{2} = hf_{2}(y_{1}, y_{2}, y_{3}, y_{4}), \\ &m_{2} = hf_{3}(y_{1}, y_{2}, y_{3}, y_{4}),\\ &n_{2} = hf_{4}(y_{1}, y_{2}, y_{3}, y_{4}). \end{array} \end{equation*} $$

Now, update y1, y2, y3 and y4 as

y1=y1+0.5k1(1+2)+k2(10.52),y2=y2+0.5l1(1+2)+l2(10.52),y3=y3+0.5m1(1+2)+m2(10.52),y4=y4+0.5n1(1+2)+n2(10.52).$$ \begin{equation*} \begin{array}{rl} &y_{1} = y_{1}+ 0.5 k_{1}(-1+\sqrt{2}) + k_{2}(1-0.5\sqrt{2}),\\ &y_{2} = y_{2}+ 0.5 l_{1}(-1+\sqrt{2}) + l_{2}(1-0.5\sqrt{2}),\\ &y_{3} = y_{3}+ 0.5 m_{1}(-1+\sqrt{2}) + m_{2}(1-0.5\sqrt{2}),\\ &y_{4} = y_{4}+ 0.5 n_{1}(-1+\sqrt{2}) + n_{2}(1-0.5\sqrt{2}). \end{array} \end{equation*} $$

Evaluate the following quantity:

k3=hf1(y1,y2,y3,y4),l3=hf2(y1,y2,y3,y4),m3=hf3(y1,y2,y3,y4),n3=hf4(y1,y2,y3,y4).$$ \begin{equation*} \begin{array}{rl} &k_{3} = hf_{1}(y_{1}, y_{2}, y_{3}, y_{4}),\\ &l_{3} = hf_{2}(y_{1}, y_{2}, y_{3}, y_{4}),\\ &m_{3} = hf_{3}(y_{1}, y_{2}, y_{3}, y_{4}),\\ &n_{3} = hf_{4}(y_{1}, y_{2}, y_{3}, y_{4}). \end{array} \end{equation*} $$

Now, update y1, y2, y3 and y4 as

y1=y1[k22+(1+12)k3],y2=y2[l22+(1+12)l3],y3=y3[m22+(1+12)m3],y4=y4[n22+(1+12)n3].$$ \begin{equation*} \begin{array}{rl} & y_{1} = y_{1}- \left[\dfrac{k_{2}}{\sqrt{2}}+(1+\dfrac{1}{\sqrt{2}})k_{3}\right],\\ & y_{2} = y_{2}- \left[\dfrac{l_{2}}{\sqrt{2}}+(1+\dfrac{1}{\sqrt{2}})l_{3}\right],\\ & y_{3} = y_{3}- \left[\dfrac{m_{2}}{\sqrt{2}}+(1+\dfrac{1}{\sqrt{2}})m_{3}\right],\\ & y_{4} = y_{4}- \left[\dfrac{n_{2}}{\sqrt{2}}+(1+\dfrac{1}{\sqrt{2}})n_{3}\right]. \end{array} \end{equation*} $$

Evaluate the following quantity:

k4=hf1(y1,y2,y3,y4),l4=hf2(y1,y2,y3,y4),m4=hf3(y1,y2,y3,y4),n4=hf4(y1,y2,y3,y4).$$ \begin{equation*} \begin{array}{rl} & k_{4} = hf_{1}(y_{1}, y_{2}, y_{3}, y_{4}),\\ & l_{4} = hf_{2}(y_{1}, y_{2}, y_{3}, y_{4}),\\ & m_{4} = hf_{3}(y_{1}, y_{2}, y_{3}, y_{4}),\\ & n_{4} = hf_{4}(y_{1}, y_{2}, y_{3}, y_{4}). \end{array} \end{equation*} $$

Also, yi,1 = x, yi,2 = ẋ, yi,3 = y and yi,4 =

Then, obtain

yi+1,1=yi,1+16[k1+(22)k2+(2+2)k3+k4].$$ \begin{equation} y_{i+1,1} = y_{i,1} + \dfrac{1}{6}\left[k_{1} + (2 -\sqrt{2})k_{2}+ (2 +\sqrt{2})k_{3} + k_{4}\right]. \end{equation} $$

Obtain

yi+1,2=yi,2+16[l1+(22)l2+(2+2)l3+l4].$$ \begin{equation} y_{i+1,2} = y_{i,2} + \dfrac{1}{6}\left[l_{1} + (2 -\sqrt{2})l_{2}+ (2 +\sqrt{2})l_{3} + l_{4}\right]. \end{equation} $$

Obtain

yi+1,3=yi,3+16[m1+(22)m2+(2+2)m3+m4].$$ \begin{equation} y_{i+1,3} = y_{i,3} + \dfrac{1}{6}\left[m_{1} + (2 -\sqrt{2})m_{2}+ (2 +\sqrt{2})m_{3} + m_{4}\right]. \end{equation} $$

Obtain

yi+1,4=yi,4+16[n1+(22)n2+(2+2)n3+n4].$$ \begin{equation} y_{i+1,4} = y_{i,4} + \dfrac{1}{6}\left[n_{1} + (2 -\sqrt{2})n_{2}+ (2 +\sqrt{2})n_{3} + n_{4}\right]. \end{equation} $$

i = i  +  1.

Repeat the procedure till desire accuracy is obtained.

For obtaining periodic orbit, the values of different parameters for both cases are as follows: A1 = 0.01, A1 = 0.006, A2 = 0.008, A2 = 0.002, A3 = 0.002 and A3 = 0.001.

Numerical solution for Case-I

Here θi=ϕi=π2,ψi=0 $\theta _{i} =\phi _{i} =\dfrac{\pi}{2}, \psi _{i} =0$ . Figure 1 obtained using μ = 0.01 and C = 1.92. Periodic orbit is located at x = 0.69 whose period is 165. Figure 2 obtained using μ = 0.1 and C = 1.1. Periodic orbit is located at x = 0.7124 whose period is 173. both orbits are around both primary bodies.

Fig. 1

Periodic orbit located at x = 0.69, T = 165 for C = 1.92, and μ = 0.01

Fig. 2

Periodic orbit located at x = 0.7124, T = 173 for C = 1.1, and μ = 0.1

Numerical solution for Case-II

For obtaining periodic orbit, the values of different parameters are as following. θi = 0, ψi=π4 $\psi _{i} = \dfrac{\pi}{4}$ and ϕi=π4 $\phi _{i} = \dfrac{\pi}{4}$ . Figure 3 obtained using μ = 0.01 and C = 1.92. Periodic orbit is located at x = 0.69 whose period is 165. Figure 4 obtained using μ = 0.1 and C = 1.1. Periodic orbit is located at x = 0.7124 whose period is 173. Both orbits are around both primary bodies. It can be seen that periodic orbit located at x = 0.7124 passing through bigger primary body very nearly whereas periodic orbit located at x = 0.69 passing through smaller primary body very nearly. It is observed that for both different cases, there is no change in location of periodic orbits and its period by considering value of C and μ same for both cases.

Fig. 3

Periodic orbit located at x = 0.69, T = 165 for C = 1.92, and μ = 0.01

Fig. 4

Periodic orbit located at x = 0.7124, T = 173 for C = 1.1, and μ = 0.1

For the case of stationary rotational motion of the primaries which are triaxial rigid bodies (θi=π2,ϕi=ψi=0) $\left(\theta _{i} = \dfrac{\pi}{2}, \phi _{i} = \psi _{i} =0\right)$ . During study this case, it is worthwhile pointing out the locations of the triangular points L4 and L5 and the conditions of their stability can be obtained by interchanging the parameters σ2 and σ3 by σ2 and σ3 respectively in the corresponding results given in the Case-I. In addition for the case of (θi = 0, ψi + φi = 0), the locations of triangular points L4 and L5 and the conditions of their stability can be also obtained by interchanging the parameters σ1 and σ2 by σ1 and σ2 respectively in the corresponding results given in the Case-II.

Conclusion

In this work equations of motion of infinitesimal mass for CRTBP when both primaries are triaxial rigid bodies are analyzed. Locations of triangular points and its stability is discussed for different four cases of Euler’s angles: (1) θi=ϕi=π2,ψi=0 $\theta _{i} = \phi _{i} = \dfrac{\pi}{2}, \, \psi _{i} = 0$ ; (2) θi=0,ψi+ϕi=π2 $\theta _{i} =0, \, \psi _{i} +\phi _{i} =\dfrac{\pi}{2}$ ; (3) θi=π2,ϕi=ψi=0 $\theta _{i} = \dfrac{\pi}{2}, \phi _{i} = \psi _{i} = 0$ ; (4) θi = 0, ψi + φi = 0. Particular the first two cases of Euler’s angles are analyzed in details, the locations of the triangular points and their stability are studied. While we can do similar kind of analysis for the last two cases by using the obtained results of the first two cases. In addition the numerical solution is obtained by using a fourth order Runge–Kutta–Gill integrator with some graphical investigations.

eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics