Accesso libero

Influence of velocity slip and temperature jump conditions on the peristaltic flow of a Jeffrey fluid in contact with a Newtonian fluid

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Fig. 1

Physical Model
Physical Model

Fig. 2

The variation of shape of interface with μ = 0.1, Q¯=0.1 ${\bar Q = 0.1}$ , α = 0.7 for (a) φ = 0.4, β = 0.1, λ1 = 0.1, 10, 100, (b) φ = 0.5, β = 0.1, μ = 0.1, 1.0, 10, (c) φ = 0.5, μ = 0.1, β = 0.00, 0.04, 0.10.
The variation of shape of interface with μ = 0.1, Q¯=0.1 ${\bar Q = 0.1}$ , α = 0.7 for (a) φ = 0.4, β = 0.1, λ1 = 0.1, 10, 100, (b) φ = 0.5, β = 0.1, μ = 0.1, 1.0, 10, (c) φ = 0.5, μ = 0.1, β = 0.00, 0.04, 0.10.

Fig. 3

The variation of ΔP with Q¯ ${\bar Q}$  at φ = 0.5, α = 0.7 for (a) μ = 10, β = 0.1, λ1 = 0.1, 1.0, 2.0, (b) λ1 = 1, β = 0.1, μ = 0.8, 1.0, 1.4, (c) μ = 0.1, λ1 = 1, β = 0.0, 0.2, 0.4.
The variation of ΔP with Q¯ ${\bar Q}$ at φ = 0.5, α = 0.7 for (a) μ = 10, β = 0.1, λ1 = 0.1, 1.0, 2.0, (b) λ1 = 1, β = 0.1, μ = 0.8, 1.0, 1.4, (c) μ = 0.1, λ1 = 1, β = 0.0, 0.2, 0.4.

Fig. 4

The variation of ΔP0 with φ at α = 0.7 for (a) β = 0.1, μ = 10, λ1 = 0.1, 1.0, 10, (b) β = 0.1, λ1 = 1, μ = 0.1, 1.0, 10 100, (c) λ1 = 1, μ = 10, β = 0.0, 0.2, 0.3.
The variation of ΔP0 with φ at α = 0.7 for (a) β = 0.1, μ = 10, λ1 = 0.1, 1.0, 10, (b) β = 0.1, λ1 = 1, μ = 0.1, 1.0, 10 100, (c) λ1 = 1, μ = 10, β = 0.0, 0.2, 0.3.

Fig. 5

The variation of F with Q¯ ${\bar Q}$  for different values of λ1 with fixed μ = 10, φ = 0.5, α = 0.7, β = 0.1.
The variation of F with Q¯ ${\bar Q}$ for different values of λ1 with fixed μ = 10, φ = 0.5, α = 0.7, β = 0.1.

Fig. 6

Temperature profiles at x = 0.5, φ = 0.6, α = 0.7 and Q¯=0.7 ${\bar Q = 0.7}$  for (a) μ = 1, Br = 0.2, k = 0.9, β = 0.01, γ = 0.01, λ1 = 0, 1, 2, 3, (b) λ1 = 1, μ = 0.1, Br = 0.1, k = 0.9, γ = 0.01, β = 0.00, 0.02, 0.06, 0.10, (c) λ1 = 1, Br = 0.1, k = 0.8, β = 0.01, γ = 0.01, μ = 0.1, 1.0, 2.0, 5.0, (d) λ1 = 1, Br = 0.1, μ = 0.1, β = 0.01, γ = 0.01, k = 0.8, 0.9, 1.0, 1.1 (e) λ1 = 1, μ = 0.1, k = 1, β = 0.02, γ = 0.02, Br = 0.1, 0.2, 0.3, 0.4 (f) λ1 = 1, μ = 0.1, k = 0.8, β = 0.1, Br = 0.1, γ = 0.01, 0.02, 0.03, 0.04.
Temperature profiles at x = 0.5, φ = 0.6, α = 0.7 and Q¯=0.7 ${\bar Q = 0.7}$ for (a) μ = 1, Br = 0.2, k = 0.9, β = 0.01, γ = 0.01, λ1 = 0, 1, 2, 3, (b) λ1 = 1, μ = 0.1, Br = 0.1, k = 0.9, γ = 0.01, β = 0.00, 0.02, 0.06, 0.10, (c) λ1 = 1, Br = 0.1, k = 0.8, β = 0.01, γ = 0.01, μ = 0.1, 1.0, 2.0, 5.0, (d) λ1 = 1, Br = 0.1, μ = 0.1, β = 0.01, γ = 0.01, k = 0.8, 0.9, 1.0, 1.1 (e) λ1 = 1, μ = 0.1, k = 1, β = 0.02, γ = 0.02, Br = 0.1, 0.2, 0.3, 0.4 (f) λ1 = 1, μ = 0.1, k = 0.8, β = 0.1, Br = 0.1, γ = 0.01, 0.02, 0.03, 0.04.

Fig. 7

Streamlines for (a) λ1 = 0.0 (b) λ1 = 0.1 (c) λ1 = 0.2 (d) λ1 = 0.3 with α = 0.8, φ = 0.5, Q¯=0.7 ${\bar Q = 0.7}$ , β = 0.02, μ = 1.2.
Streamlines for (a) λ1 = 0.0 (b) λ1 = 0.1 (c) λ1 = 0.2 (d) λ1 = 0.3 with α = 0.8, φ = 0.5, Q¯=0.7 ${\bar Q = 0.7}$ , β = 0.02, μ = 1.2.

Fig. 8

Streamlines for (a) β = 0.00 (b) β = 0.01 (c) β = 0.02 (d) β = 0.03 with α = 0.8, φ = 0.5, Q¯=0.8 ${\bar Q = 0.8}$ , λ1 = 0.1, μ = 1.2.
Streamlines for (a) β = 0.00 (b) β = 0.01 (c) β = 0.02 (d) β = 0.03 with α = 0.8, φ = 0.5, Q¯=0.8 ${\bar Q = 0.8}$ , λ1 = 0.1, μ = 1.2.

Fig. 9

Streamlines for (a) μ = 0.09 (b) μ = 1.0 (c) μ = 1.1 (d) μ = 1.2 with α = 0.8, φ = 0.5, Q¯=0.8 ${\bar Q= 0.8}$ , λ1 = 0.1, β = 0.02.
Streamlines for (a) μ = 0.09 (b) μ = 1.0 (c) μ = 1.1 (d) μ = 1.2 with α = 0.8, φ = 0.5, Q¯=0.8 ${\bar Q= 0.8}$ , λ1 = 0.1, β = 0.02.
eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics