Accesso libero

Multiplier method and exact solutions for a density dependent reaction-diffusion equation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Fig. 1

Kink solution with λ = 1
Kink solution with λ = 1

Similarity solutions.

ijwjzjuj
11v3tnm+12m2x$\begin{array}{} \displaystyle {t}^{\frac{n-m+1}{2\,m-2}}\,x \end{array}$hx2nm+1$\begin{array}{} \displaystyle h\,{x}^{\frac{2}{n-m+1}} \end{array}$
22v4tnm2mx$\begin{array}{} \displaystyle {t}^{\frac{n-m}{2\,m}}\,x \end{array}$2logxnm+h$\begin{array}{} \displaystyle \frac{2\,\log\left( x\right) }{n-m}+h \end{array}$
33v5xhec1tn$\begin{array}{} \displaystyle h\,e^ {- {{{\it c_1}\,t}\over{n}} } \end{array}$
44bv1 + v38x3blogt8$\begin{array}{} \displaystyle {{8\,x-3\,b\,\log t}\over{8}} \end{array}$ht34$\begin{array}{} \displaystyle h\,t^{{{3}\over{4}}} \end{array}$
45cv3 + v64ce2x33$\begin{array}{} \displaystyle -{{4\,c\,e^ {- {{2\,x}\over{\sqrt{3}}} }}\over{\sqrt{3}}} \end{array}$–log the3ce2x33x$\begin{array}{} \displaystyle h\,e^{-\sqrt{3}\,c\,e^ {- {{2\,x}\over{\sqrt{3}}} }-\sqrt{3}\,x} \end{array}$
46dv3 + v74de2x33$\begin{array}{} \displaystyle {{4\,{\it d}\,e^{{{2\,x}\over{\sqrt{3}}}}}\over{\sqrt{3}}} \end{array}$–log the3de2x3+3x$\begin{array}{} \displaystyle h\,e^{\sqrt{3}\,{\it d}\,e^{{{2\,x}\over{\sqrt{3}}}}+\sqrt{3 }\,x} \end{array}$

Reduced ODEs:

ijODEsj
11hn(nm + 1)2( hz2n$\begin{array}{} \displaystyle { {h}_{z} }^{2} \,n \end{array}$+hhzz) z2+4hn+1hz(n + 1) (nm + 1)z+2hn+2(n + m + 1)+hm+1(nm + 1)2 = 0
22hzznm2ehn2+hm2nmz2n+mnm+2+hz2nnm2ehn2+hm2nmz4nmnm+4hznnmehn2+hm2nmz3nnm+2n+2mehn2+hm2nm+n22mn+m2e2hmnnmz2n+mnm=0.$\begin{array}{} \displaystyle {h}_{zz}\,{\left( n-m\right) }^{2}\,{e}^{\frac{h\,{n}^{2}+h\,{m}^{2}}{n-m}}\,{z}^{\frac{2\,n+m}{n-m}+2}+{ {h}_{z} }^{2}\,n\,{\left( n-m\right) }^{2}\,{e}^{\frac{h\,{n}^{2}+h\,{m}^{2}}{n-m}}\,{z}^{\frac{4\,n-m}{n-m}} +4\, {h}_{z} \,n\,\left( n-m\right) \,{e}^{\frac{h\,{n}^{2}+h\,{m}^{2}}{n-m}}\,{z}^{\frac{3\,n}{n-m}} \\ +\left( \left( 2\,n+2\,m\right) \,{e}^{\frac{h\,{n}^{2}+h\,{m}^{2}}{n-m}}+\left( {n}^{2}-2\,m\,n+{m}^{2}\right) \,{e}^{\frac{2\,h\,m\,n}{n-m}}\right) \,{z}^{\frac{2\,n+m}{n-m}} =0. \end{array}$
33hn(hz)2n+c2hn+2+hn+1hzz = 0
44–12hhzz+16(hz)29bh73hz2+9h103$\begin{array}{} \displaystyle {{9\,b\,h^{{{7}\over{3}}} \,h_{z}}\over{2}}+9\,h^{{{10}\over{3}}} \end{array}$–12h2 = 0
4527h73$\begin{array}{} \displaystyle h^{{{7}\over{3}}} \end{array}$hzez+192c2hhzz–256c2(hz)2–96c2hhz–36c2h2 = 0
4627h73$\begin{array}{} \displaystyle h^{{{7}\over{3}}} \end{array}$hzez+192d2hhzz–256d2(hz)2–96d2hhz–36d2h2 = 0

Optimal systems.

i
1av1 + v2, v3
2av1 + v2, v4
3av1 + v2, v5
4av1 + v2, bv1 + bv3, cv3 + v6, dv1 + v7

Functions and generators.

ifigivk
1umunv1, v2, v3 = (nm + 1)x∂x + 2(1 – m)t∂t + 2u∂u (mn + 1)
2enuemuv1, v2, v4 = (mn)x∂x – 2nt∂t + 2∂u (nm)
3c2un+1c1un$\begin{array}{} \displaystyle {\it c_2}\,u^{n+1}-{{{\it c_1}\,u}\over{n}} \end{array}$unv1, v2, v5 = ec1t∂tc1ec1tunu$\begin{array}{} \displaystyle \frac{c_1e^{c_1t}u}{n}{\partial u} \end{array}$ (n ≠ 0)
4u13$\begin{array}{} \displaystyle u^{-\frac{1}{3}} \end{array}$u43$\begin{array}{} \displaystyle u^{\frac{-4}{3}} \end{array}$v1, v2, v3, v6 = e2x3x3e2x3uu,v7=e2x3x+3e2x3uu$\begin{array}{} \displaystyle e^{\frac{2x}{\sqrt{3}}} {\partial x}- \sqrt{3} e^{\frac{2x}{\sqrt{3}}}u {\partial u}, \, {\bf v}_7 =\displaystyle e^{-\frac{2x}{\sqrt{3}}} {\partial x}+ \sqrt{3} e^{-\frac{2x}{\sqrt{3}}}u {\partial u} \end{array}$
eISSN:
2444-8656
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics