INFORMAZIONI SU QUESTO ARTICOLO

Cita

Altenberger F., Raith J.G., Weilbold J., Auer C., Knoll T., Paulick H., Schedl A., Aupers K., Schmidt S., Neinavaie H., 2021. Casting new light on tungsten deposits in the Eastern Alps. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 172/1, 63–72. https://doi.org/10.1127/zdgg/2021/0262. Search in Google Scholar

Altenberger F., Auer T., Krause J., Auer A., Berndt J., 2023. G.O.Joe: A new non-commercial software tool for the processing of LA-ICPMS data [Poster]: MinWien2023: Joint meeting of the Mineralogical Societies of Austria, Germany, and Slovakia, 17–21 September, University of Vienna, Austria. Available online at https://www.gojoe.software/. Search in Google Scholar

Altenberger F., Krause J., Wintzer N.E., Iglseder C., Berndt J., Bachmann K., Raith J.G., 2024. Polyphase stratabound scheelite-ferberite mineralization at Mallnock, Eastern Alps, Austria. Mineralium Deposita. https://doi.org/10.1007/s00126-024-01250-x. Search in Google Scholar

Auer C., 2016. 1971) Anglesit, Aktinolith, Anorthit, „Apatit“, Allanit-(Ce), Kassiterit, Elektrum, Ilmenit, Monazit-(Ce), Hedleyit, Segnitit, Titanit, Wismut ged. und Zirkon als Neufunde vom Lienzer Schlossberg. In: Walter F., Auer C., Bernhard F., Hans-Peter Bojar F.B., Habel M., Hollerer C. E., Kolitsch U., Lamatsch P., Leikauf B., Löffler E., Niedermayr G., Postl W., Putz H., Reicht M., Schachinger T., Schillhammer H., Taucher J. (eds.), Neue Mineralfunde aus Österreich LXV, Carinthia II, 203/250, 217–218. Search in Google Scholar

Auer C., 2022. 2239) Allanit-(Ce), ein Amphibolgruppenmineral, Chalkopyrit, Cobaltit, Fluorapatit, Galenit, Ilmenit, Löllingit, Molybdänit, Muskovit, Monazit-(Ce), Pyrrhotin, Rutil, Sphalerit, Xenotim-( Y) und Zirkon vom kleinen Pyrit-Arsenopyritschurf unweit des Hochsteinhauses, Lienzer Schloßberg, Osttirol. In: Walter F., Auer C., Berger F., Bernhard F., Bieler H., Bojar H.-P., Eck H., Jakely D., Kiseljak R., Knobloch E., Knobloch G., Kolitsch U., Krüger B., Löffler E., Postl W., Rausch L., Schachinger T., Schillhammer H., Schreieck E., Steck C., Števko M., Tropper P., (eds.), Neue Mineralfunde aus Österreich LXXI. Carinthia II, 212./132, 221–308. Search in Google Scholar

Auwera J., André L., 1991. Trace elements (REE) and isotopes (O, C, Sr) to characterize the metasomatic fluid sources: evidence from the skarn deposit (Fe, W, Cu) of Traversella (Ivrea, Italy). Contributions to Mineralogy and Petrology, 106, 325–339. https://doi.org/10.1007/BF00324561. Search in Google Scholar

Baldassarre G., Fiorucci A., Marini P., 2024. Recovery of critical raw materials from abandoned mine wastes: some potential case studies in northwest Italy. Materials Proceedings, 2023, 15, 77. https://doi.org/10.3390/materproc2023015077. Search in Google Scholar

Bau M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93/3, 219–230. https://doi.org/10.1016/0009-2541(91)90115-8. Search in Google Scholar

Becker M., de Villiers J., Bradshaw D., 2010. The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits. Economic Geology, 105/5, 1025–1037. https://doi.org/10.2113/econgeo.105.5.1025. Search in Google Scholar

Borsi S., Del Moro A., Sassi F.P., 1973. Metamorphic evolution of the Austridic rocks to the south of the Tauern Window (Eastern Alps): Radiometric and geo-petrologic data. Memorie della Societa Geologica Italiana, 12/4, 549–571. Search in Google Scholar

Borsi S., Del Moro A., Sassi F.P., Zanferrari A., Zirpol G., 1978. New geopetrologic and radiometric data on the alpine history of the Austridic continental margin south of the Tauern Window (Eastern Alps). Memorie di scienze geologiche, 32, 1–17. Search in Google Scholar

Brigo L., Omenetto P., 1983. Scheelite-bearing occurrences in the Italian Alps: Geotectonic and lithostratigraphic setting. In: Schneider H.-J., (ed.), Mineral deposits of the Alps and of the Alpine epoch in Europe, Special Publication Society for Geology Applied to Mineral Deposits. Springer, Berlin, Heidelberg, 3, 41–50. https://doi.org/10.1007/978-3-642-68988-8_5 Search in Google Scholar

Brugger J., Etschmann B., Pownceby M., Liu W., Grundler P., Brewe D., 2008. Oxidation state of europium in scheelite: Tracking fluid-rock interaction in gold deposits. Chemical Geology, 257, 26–33. https://doi.org/10.1016/j.chemeo.2008.08.003. Search in Google Scholar

de Villiers J.P.R., Liles D.C., Becker M., 2009. The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution. American Mineralogist, 94, 1405–1410. ISSN: 0003-004X, 1410. https://doi.org/10.2138/am.2009.3081. Search in Google Scholar

Dubru M., Auwera J.V., van Marcke de Lummen G., Verkaeren J., 1988. Distribution of scheelite in magnesian skarns at Traversella (Piemontese Alps, Italy) and Costabonne (Eastern Pyrenees, France): Nature of the associated magmatism and influence of fluid composition. In: Boissonnas J., Omenetto P., (eds.), Mineral deposits within the European Community. Springer Berlin Heidelberg, Berlin, Heidelberg, 117–134. Search in Google Scholar

Eichhorn R., Höll R., Jagoutz E., Schärer U., 1997. Dating scheelite stages: A strontium, neodymium, lead approach from the Felbertal tungsten deposit, Central Alps, Austria. Geochimica et Cosmochimica Acta, 61/23, 5005–5022. Search in Google Scholar

Einaudi M.T., Meinert L.D., Newberry R.J., 1981. A special issue devoted to skarn deposits. Introduction – terminology, classification, and composition of skarn deposits. Economic Geology, Seventy-fifth anniversary volume, 1905–1980, 77, 317–391. Search in Google Scholar

Evans H.T., 1970. Lunar troilite: crystallography. Science, 167, 3918, 621–623. https://doi.org/DOI:10.1126/science.167.3918.621. Search in Google Scholar

Exel R., 1986. Erläuterungen zur Lagerstättenkarte von Osttirol. Archiv für Lagerstättenforschung der Geologischen Bundesanstalt, 7, 19–31. Search in Google Scholar

Friedrich O.M., 1949. Erzmikroskopische Untersuchungen an Kärntner Lagerstätten III. Der Karinthin, 6, 102–105. Search in Google Scholar

Fuchs H.W., 1982. Magnetkies- und Scheelitanreicherungen in den „Alten Gneisen“ des Lienzer Schlossberges (Osttirol). Archiv für Lagerstättenforschung der Geologischen Bundesanstalt, 2, 67–70. Search in Google Scholar

Furlani M., 1912. Der Drauzug im Hochpustertal. Mitteilungen der Geologischen Gesellschaft in Wien, 5, 252–271. Search in Google Scholar

Ghaderi M., Palin M., Campbell I.H., Sylvester P.J., 1999. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Western Australia. Economic Geology, 94, 423–438. https://doi.org/10.2113/gsecongeo.94.3.423. Search in Google Scholar

Green C.J., Lederer G.W., Parks H.L., Zientek M.L., 2020. Grade and tonnage model for tungsten skarn deposits – 2020 update, Scientific Investigations Report: Reston, VA, p. 23. Search in Google Scholar

Groat L., Hawthorne F., Ercit T.S., 1992. The chemistry of vesuvianite. Canadian Mineralogist, 30, 19–48. Search in Google Scholar

Guhl M., Troll G., 1987. Die Permotrias von Kalkstein im Altkristallin der südlichen Deferegger Alpen (Österreich). Jahrbuch der Geologischen Bundesanstalt, 130/1, 37–60. Search in Google Scholar

Haupt C.P., Krause J., Schulz B., Götze J., Chischi J., Berndt J., Klemme S., Schmidt S., Aupers K., Reinhardt N., 2024. New insights on the formation of the polymetamorphic Felbertal tungsten deposit (Austria, Eastern Alps) revealed by CL, EPMA, and LA-ICP-MS investigation, Mineralium Deposita. https://doi.org/10.1007/s00126-024-01284-1. Search in Google Scholar

Hausberger G., Polegeg S., Pucher M., Punzengruber K., Thalmann F., 1982. Regionale Scheelitprospektion in Osttirol (Probenahme und erste Ergebnisse). Archiv für Lagerstättenforschung der Geologischen Bundesanstalt, 1, 53–60. Search in Google Scholar

Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D., 2012. Nomenclature of the amphibole supergroup. American Mineralogist, 97/11–12, 2031–2048. https://doi.org/10.2138/am.2012.4276. Search in Google Scholar

Heinisch H., Schmidt K., 1976. Zur kaledonischen Orogenese in den Ostalpen. Geologische Rundschau, 65, 459–482. Search in Google Scholar

Heinisch H., Schmidt K., 1984. Zur Geologie des Thurntaler Quarzphyllits und des Altkristallins südlich des Tauernfensters (Ostalpen, Südtirol). Geologische Rundschau, 73/1, 113–129. https://doi.org/10.1007/BF01820363. Search in Google Scholar

Höll R., 1971. Scheelitvorkommen in Österreich. Erzmetall, 24/6, 273–282. Search in Google Scholar

Höll R., 1979. Time- and stratabound early Paleozoic scheelite, stibnite and cinnabar deposits in the Eastern Alps. Verhandlungen der Geologischen Bundesanstalt, 1978/3, 369–387. Search in Google Scholar

Hsu L.C., 1977. Effects of oxygen and sulfur fugacities on the scheelite-tungstenite and powellite-molybdenite stability relations. Economic Geology, 72/4, 664–670. https://doi.org/10.2113/gsecongeo.72.4.664. Search in Google Scholar

Hutter F., 2022. Wolframvererzungen und Intrusionsgesteine am Lienzer Schlossberg, Osttirol. Master‘s thesis, Montanuniversität Leoben, Leoben, 200 pp. https://pureadmin.unileoben.ac.at/ws/portalfiles/portal/9334828/AC16582762.pdf. Search in Google Scholar

Jensen K.R., Campos E., Wilkinson J.J., Wilkinson C.C., Kearsley A., Miranda-Díaz G., Véliz W., 2022. Hydrothermal fluid evolution in the Escondida porphyry copper deposit, northern Chile: evidence from SEM-CL imaging of quartz veins and LA-ICP-MS of fluid inclusions. Mineralium Deposita, 57/2, 279–300. https://doi.org/10.1007/s00126-021-01058-z. Search in Google Scholar

Jochum K.P., Nohl U., Herwig K., Lammel E., Stoll B., Hofmann A.W., 2005. GeoReM: A new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29/3, 333–338. https://doi.org/10.1111/j.1751-908X.2005.tb00904.x. Search in Google Scholar

Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Search in Google Scholar

Stracke A., Birbaum K., Frick D.A., Günther D., Enzweiler J., 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35/4, 397–429. https://doi.org/10.1111/j.1751-908X.2011.00120.x. Search in Google Scholar

Kelly D.P., Vaughan D.J., 1983. Pyrrhotine-pentlandite ore textures: a mechanistic approach. Mineralogical Magazine, 3, 237–253, 47/345, 453–463. https://doi.org/10.1180/minmag.1983.047.345.06. Search in Google Scholar

Krol W., 1974. Geologisch-lagerstättenkundliche Untersuchungen im Gebiet nördlich von Sillian (Osttirol/Österreich). PhD thesis, University of Munich, 79 pp. Search in Google Scholar

Linner M., 2003. Bericht 2002 über geologische Aufnahmen in den Deferegger Alpen auf Blatt 179 Lienz. Jahrbuch der Geologischen Bundesanstalt, 143/3, 493–502. Search in Google Scholar

Linner M., Reitner J.M., Pavlik W., 2013. Geologische Karte 1:50 000, Blatt Lienz: Wien, Geologische Bundesanstalt. Search in Google Scholar

Locock A.J., 2008. An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers & Geosciences, 34/ISSN: 0098-3004, 1780. https://doi.org/10.1016/j.cageo.2007.12.013. Search in Google Scholar

Locock A.J., 2014. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62/ISSN: 0098-3004, 11. https://doi.org/10.1016/j.cageo.2013.09.011. Search in Google Scholar

Meinert L.D., 1992. Skarns and skarn deposits. Geoscience Canada, 19/4, 145–162. Search in Google Scholar

Miranda, A.C.R., Beaudoin G., Rottier B., 2022. Scheelite chemistry from skarn systems: implications for ore-forming processes and mineral exploration. Mineralium Deposita, 57:1469–1497. https://doi.org/10.1007/s00126-022-01118-y. Search in Google Scholar

Nassau K., Loiacono G.M., 1963. Calcium tungstate – III: Trivalent rare earth substitution. Journal of Physics and Chemistry of Solids, 24/12, 1503–1510. https://doi.org/https://doi.org/10.1016/0022-3697(63)90090-8. Search in Google Scholar

Neinavaie H., Pfeffer W., Thalmann F., 1985. Ergebnisse der geochemischen Prospektion auf Stahlveredler im Bundesgebiet. Berg- und Hüttenmännische Monatshefte, 130/4, 111–116. Search in Google Scholar

Neinavaie M.H., 1979. Schichtengebundene Metallanreicherungen in den Schieferhüllen und in der Matreier Zone Ostirols, Ph.D. thesis, University of Innsbruck, 148 pp. https://bibsearch.uibk.ac.at/AC00905216 Search in Google Scholar

Neinavaie M.H., Ghassemi B., Fuchs H.W., 1983. Die Erzvorkommen Osttirols. Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum, 63, 69–113. Search in Google Scholar

Neubauer F., Heberer B., Dunkl I., Liu X., Bernroider M., Dong Y., 2018. The Oligocene Reifnitz tonalite (Austria) and its host rocks: Implications for Cretaceous and Oligocene-Neogene tectonics of the south-eastern Eastern Alps. Geologica Carpathica, 69. https://doi.org/10.1515/geoca-2018-0014. Search in Google Scholar

Neubauer F., Sassi F.P., 1993. The Austro-Alpine quartzphyllites and related Palaeozoic formations. In: von Raumer J.F., and Neubauer F., (eds.), Pre-Mesozoic geology in the Alps. Springer, Berlin, Heidelberg, 423–439. Search in Google Scholar

Newberry R.J., 1982. Tungsten-bearing skarns of the Sierra Nevada; I. The Pine Creek Mine, California. Economic Geology, 77/4, 823–844. https://doi.org/10.2113/gsecongeo.77.4.823. Search in Google Scholar

Newberry R.J., Einaudi M.T., 1981. Tectonic and geochemical setting of tungsten skarn mineralization in the Cordillera. In: Dickinson W.R., Payne W.D., (eds.), Relations of tectonics to ore deposits in the southern Cordillera. 14. Arizona Geological Society Digest, 99–111. Search in Google Scholar

Ordosch A., Raith J.G., Schmidt S., Aupers K., 2019. Polyphase scheelite and stanniferous silicates in a W-(Sn) skarn close to Felbertal tungsten mine, Eastern Alps. Mineralogy and Petrology, 113, 703–725. https://doi.org/10.1007/s00710-019-00675-x Search in Google Scholar

Pettke T., Oberli F., Audétat A., Guillong M., Simon A.C., Hanley J.J., Klemm L.M., 2012. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geology Reviews, 44, 10–38. https://doi.org/http://dx.doi.org/10.1016/j.oregeorev.2011.11.001 Search in Google Scholar

Pirkl H., Schedl A., Pfleiderer S., Neinanveie H., Reitner, H., Klein P., Hobiger G., Filzmoser P., Lipiarski P., Linner M., 2015. Geochemischer Atlas von Österreich – Bundesweite Bach- und Flusssedimentgeochemie (1978–2010). Geologische Bundesanstalt, Wien, 288 pp. Search in Google Scholar

Poitrenaud T., Poujol M., Augier R., Marcoux E., 2019. The polyphase evolution of a late Variscan W/Au deposit (Salau, French Pyrenees): insights from REE and U/Pb LA-ICP-MS analyses. Mineralium Deposita, 55/6, 1127–1147. https://doi.org/10.1007/s00126-019-00923-2 Search in Google Scholar

Portugaller T., 2010. Scheelitvererzungen im Thurntaler Quarzphyllitkomplex, Osttirol: Petrographische und chemische Untersuchungen an Nebengesteinen und Bachsedimenten. Masterarbeit, Montanuniversität Leoben, Leoben, 190 pp. Search in Google Scholar

Poulin R.S., Kontak D.J., McDonald A., McClenaghan M.B., 2018. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry. The Canadian Mineralogist, 56/3, 265–302. https://doi.org/10.3749/canmin.1800005 Search in Google Scholar

Poulin R.S., McDonald A.M., Kontak D.J., McClenaghan M.B., 2016. On the relationship between cathodoluminescence and the chemical composition of scheelite from geologically diverse ore-deposit environments. The Canadian Mineralogist, 54/5, 1147–1173. https://doi.org/10.3749/canmin.1500023 Search in Google Scholar

Putnis A., 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689–708. Search in Google Scholar

Raimbault L., Baumer A., Dubru M., Benkerrou C., Croze V., Zahm A., 1993. REE fractionation between scheelite and apatite in hydrothermal conditions. American Mineralogist, 78/11–12, 1275–1285. Search in Google Scholar

Raith J.G., 1983. Geologische Bearbeitung neugefundener Scheelitvererzungen in den Ostalpen, unpublished report: Eisenerz, Voest-Alpine AG, p. 39. Search in Google Scholar

Raith J.G., Grum W., Prochaska W., Frank W., 1995. Polymetamorphism and polyphase deformation of the strata-bound magnesite- scheelite deposit, Tux-Lanersbach, eastern Alps, Austria. Economic Geology, 90/4, 763–781. Search in Google Scholar

Raith J.G., Schmidt S., Aupers K., 2018. Field Trip Pre-EX-5. Tungsten deposit Felbertal, Salzburg, Austria. Berichte der Geologischen Bundesanstalt, 126, 7–46. Search in Google Scholar

Ramdohr P., 1975. Die Erzmineralien und ihre Verwachsungen. 4. Auflage. Akademie-Verlag, Berlin, 1277 pp. Search in Google Scholar

Rosenberg C.L., 2004. Shear zones and magma ascent; a model based on a review of the Tertiary magmatism in the Alps. Tectonics, 23, TC3002, doi 10.1029/2003tc001526. https://doi.org/10.1029/2003tc001526. Search in Google Scholar

Saìnchez S.M.T., Benito M.C.M., Peìrez M.L.C., 2009. Mineralogical and physiochemical evolution of the Los Santos scheelite skarn, Salamanca, NW Spain. Economic Geology, 104/7, 961–995. https://doi.org/10.2113/econgeo.104.7.961 Search in Google Scholar

Schmid S.M., Fügenschuh B., Kissling E., Schuster R., 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97/1, 93–117. Search in Google Scholar

Schmid, S., 2012. From deposit to concentrate: The basics of tungsten mining, Part 1: Project generation and project development. ITIA Newsletter Tungsten, June 2012. Search in Google Scholar

Schulz B., 1991. Deformation und Metamorphose im Thurntaler Komplex (Ostalpen). Jahrbuch der Geologischen Bundesanstalt Wien, 134/2, 369–391. Search in Google Scholar

Schulz B., 1993. P-T-deformation paths of Variscan metamorphism in the Austroalpine basement: controls on geothermobarometry from microstructures in progressively deformed metapelites. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 301–318. Search in Google Scholar

Schulz B., Bombach K., 2003. Single Zircon Pb-Pb geochronology of the Early-Palaeozoic magmatic evolution in the Austroalpine basement to the south of the Tauern Window. Jahrbuch der Geologischen Bundesanstalt Wien, 143/2, 303–321. Search in Google Scholar

Schulz B., Bombach K., Pawlig S., Brätz H., 2004. Neoproterozoic to Early-Palaeozoic magmatic evolution in the Gondwana-derived Austroalpine basement to the south of the Tauern Window (Eastern Alps). International Journal of Earth Sciences, 93/5, 824–843. https://doi.org/10.1007/s00531-004-0421-8. Search in Google Scholar

Schulz B., Klemd R., Brätz H., 2006. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochimica et Cosmochimica Acta 70:697-710. doi: 10.1016/j.gca.2005.10.001. Search in Google Scholar

Schulz B., Steenken A., Siegesmund S., 2008. Geodynamic evolution of an Alpine terrane – the Austroalpine basement to the south of the Tauern Window as a part of the Adriatic Plate (eastern Alps). Geological Society, London, Special Publications, 298/1, 5–44. https://doi.org/10.1144/sp298.2. Search in Google Scholar

Sciuba M., Beaudoin G., Grzela D., Makvandi S., 2020. Trace element composition of scheelite in orogenic gold deposits. Mineralium Deposita, 55/6, 1149–1172. https://doi.org/10.1007/s00126-019-00913-4. Search in Google Scholar

Seedorff E., Dilles J.H., Proffett J.M, Jr., Einaudi M.T., Zuercher L., Stavast W.J.A., Johnson D.A., Barton M.D., 2005. Porphyry deposits; characteristics and origin of hypogene features. In: Hedenquist J.W., Thompson J.F.H., Goldfarb R.J., Richards J.P., (eds.), Economic Geology One Hundreth Anniversary Volume 1905–2005. Society of Economic Geologists, Littleton, CO, 251–298. Search in Google Scholar

Senarclens-Grancy W., 1965. Zur Grundgebirgs- und Quartärgeologie der Deferegger Alpen und ihrer Umgebung. Verhandlungen der Geologischen Bundesanstalt: Sonderheft G, 116/2, 246–255. Search in Google Scholar

Shore M., Fowler A.D., 1996. Oscillatory zoning in minerals; a common phenomenon. The Canadian Mineralogist, 34/6, 1111–1126. Search in Google Scholar

Siegesmund S., Heinrichs T., Romer R.L., Doman D., 2007. Age constraints on the evolution of the Austroalpine basement to the south of the Tauern Window. International Journal of Earth Sciences, 96, 415–432. Search in Google Scholar

Siegesmund S., Oriolo S., Heinrichs T., Basei M., Nolte N., Hüttenrauch F., Schulz B., 2018. Provenance of Austroalpine basement metasediments: Tightening up Early Palaeozoic connections between peri-Gondwanan domains of central Europe and northern Africa. – International Journal of Earth Sciences, 107, 2293–2315. https://doi.org/10.1007/s00531-018-1599-5. Search in Google Scholar

Stegmüller G., 2022. Tectonic Data Analyzer, Universität Graz, http://iewarchiv.uni-graz.at/software/tda. Search in Google Scholar

Sverjensky D.A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67/1, 70–78. Search in Google Scholar

Thalmann F., Schermann O., Schroll E., Hausberger G., 1989. Geochemical atlas of the Republic of Austria 1:1,000.000: Bohemian Massif and central zone of the Eastern Alps (Stream sediments <80 mesh>): Vienna (Austria), Voest-Alpine AG, Bundesversuchs- und Forschungsanstalt Arsenal, Geologische Bundesanstalt, p. 36. Search in Google Scholar

Tokonami M., Nishiguchi K., Morimoto N., 1972. Crystal structure of a monoclinic pyrrhotite (Fe7S8). American Mineralogist, 57/7–8, 1066–1080. Search in Google Scholar

Villiers J.P.R. d., Liles D.C., 2010. The crystal-structure and vacancy distribution in 6C pyrrhotite. American Mineralogist, 95, 148–152. Search in Google Scholar

Voest-Alpine AG, 1979. Bericht über die 1979 im Freischurfgebiet Schlossberg-Lienz durchgeführten Untersuchungsarbeiten, unpublished report: Eisenerz, Voest Alpine AG, p. 6. Search in Google Scholar

von Blanckenburg F., Davies J.H., 1995. Slab breakoff – a model for syn- collisional magmatism and tectonics in the Alps. Tectonics, 14/1, 120–131. https://doi.org/10.1029/94tc02051 Search in Google Scholar

von Blanckenburg F., Kagami H., Deutsch A., Oberli F., Meier M., Wiedenbeck M., Barth S., Fischer H., 1998. The origin of Alpine plutons along the Periadriatic Lineament. Schweizerische Mineralogische und Petrographische Mitteilungen, 78/1, 55–66. Search in Google Scholar

von Raumer J.F., Bussy F., Schaltegger U., Schulz B., Stampfli G.M., 2013. Pre-Mesozoic Alpine basements – their place in the European Paleozoic framework. – Geological Society America Bulletin, 125, 89–108, DOI: 10.1130/B30654.1 Search in Google Scholar

Warr L.N., 2021. IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85/ISSN: 0026-461X, 320. https://doi.org/10.1180/mgm.2021.43 Search in Google Scholar

Weber L., Lipiarski P., 2020. IRIS Online. Interaktives Rohstoff Informations System. GeoSphere Austria, Vienna. https://www.geologie.ac.at/services/webapplikationen/iris-interaktives-rohstoffinformationssystem (Accessed on 17 February 2024). Search in Google Scholar

Wieser B., Raith J.G., Thöni M., Cornell D.H., Stein H., Paar, W., 2010. In-situ trace element and ID-TIMS Sm-Nd analysis of scheelite and Re-Os dating of molybdenite at Schellgaden, a Au-(W) deposit in the Eastern Alps, Austria. Pangeo 2010 Abstracts, Journal of Alpine Geology, 52, 253–254. Search in Google Scholar

eISSN:
2072-7151
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Geosciences, Geophysics, Geology and Mineralogy, other