Accesso libero

On the Discrepancy of Two Families of Permuted Van der Corput Sequences

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] BOURGAIN, J.—KONTOROVICH, A.: On Zaremba’s conjecture, Ann. of Math. 180 (2014), no. 2. 1–6Search in Google Scholar

[2] CARLITZ, L.: Permutations in a finite field, Proc. Amer. Math. Soc. 4 (1953), 538.10.1090/S0002-9939-1953-0055965-8Search in Google Scholar

[3] CHAIX, H.—FAURE, H.: Discrépance et diaphonie en dimension un, Acta Arith. 63 (1993), 103–141.10.4064/aa-63-2-103-141Search in Google Scholar

[4] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences. Cambridge Univ. Press, Cambridge, England, 2010.10.1017/CBO9780511761188Search in Google Scholar

[5] DRMOTA, M.—TICHY, R. F.: Sequences, Discrepancies and Applications. In: Lecture Notes in Math. Vol. 1651. Springer-Verlag, Berlin, 1997.Search in Google Scholar

[6] FAURE, H.: Discrépance de suites associéesàunsystème de numération (en dimension un), Bull. Soc. Math. France 109 (1981), no 2, 143–182.Search in Google Scholar

[7] FAURE, H.: Good permutations for extreme discrepancy, J. Number Theory 42 (1992), 47–56.10.1016/0022-314X(92)90107-ZSearch in Google Scholar

[8] FAURE, H.: Irregularities of distribution of digital (0, 1)-sequences in prime base, Integers 5 (2005), no. 3, A7, 12 pages.Search in Google Scholar

[9] FAURE, H.: Selection criteria for (random) generation of digital (0,s)-sequences. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, (H. Niederreiter and D. Talay, eds.), Springer-Verlag, Berlin (2006), pp. 113–126.Search in Google Scholar

[10] FAURE, H.: Star extreme discrepancy of generalized two-dimensional Hammersley point sets, Unif. Distrib. Theory 3 (2008), no. 2, 45–65.Search in Google Scholar

[11] FAURE, H—KRITZER, P.—PILLICHSHAMMER, F.: From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules, Indag. Math. 26 (2015), 760–822.10.1016/j.indag.2015.09.001Search in Google Scholar

[12] FAURE, H.—LEMIEUX, C.: Generalized Halton Sequences in 2008: A Comparative Study, ACM Trans. Model. Comp. Sim. 19 (2009), no. 15, 1–31.Search in Google Scholar

[13] HUANG, S.: An Improvement to Zaremba’s Conjecture. Geometric and Functional Analysis 25 (2015), 860–914.Search in Google Scholar

[14] KHINCHIN, A. YA.: Continued Fractions. The University of Chicago Press, Chicago, Ill.-London, 1964.10.1063/1.3051235Search in Google Scholar

[15] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.Search in Google Scholar

[16] LARCHER, G.: On the discrepancy of sequences in the unit-interval, Indag. Math., New Series 27 (2016), 546–558.Search in Google Scholar

[17] MATOUŠEK, J.: On the L2-discrepancy for anchored boxes, J. Complexity 14 (1998), 527–556.10.1006/jcom.1998.0489Search in Google Scholar

[18] NIEDERREITER, H.: Applications of diophantine approximations to numerical integration, In: Diophantine Approximation and Its Applications, (C.F. Osgood, ed.), Academic Press, New York, 1973, pp. 129–199.Search in Google Scholar

[19] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.Search in Google Scholar

[20] OSTROMOUKHOV, V.: Recent progress in improvement of extreme discrepancy and star discrepancy of one-dimensional Sequences, In: Monte Carlo and Quasi-Monte Carlo Methods 2008, (P. L’Ecuyer, and A. B. Owen, eds.), Springer-Verlag, Berlin, 2009, pp. 561–572.10.1007/978-3-642-04107-5_36Search in Google Scholar

[21] PAUSINGER, F.: Weak multipliers for generalized van der Corput sequences, J. Théor. Nombres Bordeaux 24 (2012), no. 3, 729–749.Search in Google Scholar

[22] SCHMIDT, W. M.: Irregularities of distribution VII, Acta Arith. 21 (1972), 45–50.10.4064/aa-21-1-45-50Search in Google Scholar

[23] TOPUZOĞLU, A.: The Carlitz rank of permutations of finite fields: a survey, J. Symb. Comput. 64 (2014), 53–66.10.1016/j.jsc.2013.07.004Search in Google Scholar

[24] ZAREMBA, S. K.: La méthode des bons treillis pour le calcul des intégrals multiples. In: Applications of Number Theory to Numerical Analysis, (S. K. Zaremba, ed.), (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971), Academic Press, New York, 1972, pp. 39–119.Search in Google Scholar

eISSN:
2309-5377
Lingua:
Inglese