Accesso libero

Spatial Equidistribution of Binomial Coefficients Modulo Prime Powers

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] BARAT, G.—GRABNER, P. J.: Digital functions and distribution of binomial coefficients, J. London Math. Soc. 64 (2001), 523–547.10.1112/S0024610701002630Search in Google Scholar

[2] BARBOLOSI, D.—GRABNER, P. J.: Distribution des coefficients multinomiaux et q-binomiaux modulo p, Indag. Math. 7 (1996), 129–135.10.1016/0019-3577(96)85084-1Search in Google Scholar

[3] CARLITZ, L.: The number of binomial coefficients divisible by a fixed power of a prime, Rend. Circ. Matem. Palermo 16 (1967), 299–320.10.1007/BF02843799Search in Google Scholar

[4] DAVIS, K. S.—WEBB, W.: Lucas congruence for prime powers, European J. Combin. 11 (1990), 229–233.10.1016/S0195-6698(13)80122-9Search in Google Scholar

[5] GARFIELD, R.—WILF, H. S.: The distribution of the binomial coefficients modulo p, J. Number Theory 41 (1992), 1–5.10.1016/0022-314X(92)90078-4Search in Google Scholar

[6] GRABNER, P. J.—HEUBERGER, C.—PRODINGER, H.: Counting optimal joint digit expansions, Integers 5 (2005), no. 3, A09, 19 pages (electronic).Search in Google Scholar

[7] GRANVILLE, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic mathematics (Burnaby, BC, 1995), Amer. Math. Soc., Providence, RI, 1997, pp. 253–276.Search in Google Scholar

[8] GREINECKER, F.: Spatial equidistribution of combinatorial number schemes, J. Fractal Geom. (2016) (to appear).10.4171/JFG/46Search in Google Scholar

[9] KUMMER, E. E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. reine angew. Math. 44 (1852), 93–146.Search in Google Scholar

[10] LUCAS, É: Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49–54.10.24033/bsmf.127Search in Google Scholar

[11] SINGMASTER, D.: Notes on binomial coefficients, I—A generalization of Lucas’ congruence, II—The least n such that pe divides an r-nomial coefficient of rank n, III—Any integer divides almost all binomial coefficients, J. London Math. Soc. 8 (1974), 545–548, 549–554, 555–560.Search in Google Scholar

[12] SPIEGELHOFER, L.—WALLNER, M.: Divisibility of binomial coefficients by powers of primes, arXiv:1604.07089, 2016.Search in Google Scholar

[13] VON HAESELER, F.—PEITGEN, H.-O.—SKORDEV, G.: Pascal’s triangle, dynamical systems and attractors, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 479–486.Search in Google Scholar

[14] _____, Cellular automata, matrix substitutions and fractals, Ann. Math. Artificial Intelligence 8 (1993), 345–362. (Theorem proving and logic programming (1992).)10.1007/BF01530797Search in Google Scholar

eISSN:
2309-5377
Lingua:
Inglese