Accesso libero

Equilibrium isotherm studies of copper and zinc removal from model solutions using natural and alkaline treated hornbeam sawdust

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Pavolová, H., Lacko, R., Hajduová, Z., Šimková, Z., & Rovňák, M. (2020). The Circular Model in Disposal with Municipal Waste. A Case Study of Slovakia. International Journal of Environmental Research and Public Health, 17(6), 1839. https://doi.org/10.3390/ijerph1706183910.3390/ijerph17061839Search in Google Scholar

[2] Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-910.1007/s10311-018-0785-9Search in Google Scholar

[3] Očenášová, M., Seňová, A., Pavolová, H., Rovňák, M., & Muchová, M. S. (2020). A Systematic Approach to Occupational Safety and Health Focusing on Prevention of Damaging Aspects and Risk Categories in Mining Company. In New Approaches in Management of Smart Manufacturing Systems (pp. 187-206). Springer, Cham. https://doi.org/10.1007/978-3-030-40176-4_1210.1007/978-3-030-40176-4_12Search in Google Scholar

[4] Božić, D., Gorgievski, M., Stanković, V., Štrbac, N., Šerbula, S., & Petrović, N. (2013). Adsorption of heavy metal ions by beech sawdust – Kinetics, mechanism and equilibrium of the process. Ecological Engineering, 58, 202–206. https://doi.org/10.1016/j.ecoleng.2013.06.03310.1016/j.ecoleng.2013.06.033Search in Google Scholar

[5] SR Government Regulation 269/2010 Coll. which stipulates criteria for achieving good water balance – limit values for zinc and copper discharged waste waterSearch in Google Scholar

[6] Abdel-Ghani, N. T., El-Chaghaby, G. A., & Helal, F. S. (2013). Simultaneous removal of aluminum, iron, copper, zinc, and lead from aqueous solution using raw and chemically treated African beech wood sawdust. Desalination and Water Treatment, 51(16–18), 3558–3575. https://doi.org/10.1080/19443994.2012.75080610.1080/19443994.2012.750806Search in Google Scholar

[7] Renu, Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7(4), 387–419. https://doi.org/10.2166/wrd.2016.10410.2166/wrd.2016.104Search in Google Scholar

[8] Pavan Kumar, G. V. S. R., Malla, K. A., Yerra, B., & Srinivasa Rao, K. (2019). Removal of Cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks. Applied Water Science, 9(3), 44. https://doi.org/10.1007/s13201-019-0924-x10.1007/s13201-019-0924-xSearch in Google Scholar

[9] Tribedia, P., Singh, S., & Pandey, L. (2015). Removal of zinc from synthetic waste water by saw dust as an adsorbent. International Journal of Innovative Science, Engineering & Technology, 2(6), 120-127.Search in Google Scholar

[10] Meunier, N., Laroulandie, J., Blais, J. F., & Tyagi, R. D. (2003). Cocoa shells for heavy metal removal from acidic solutions. Bioresource Technology, 90(3), 255–263. https://doi.org/10.1016/S0960-8524(03)00129-910.1016/S0960-8524(03)00129-9Search in Google Scholar

[11] Kumar, P. S., Ramalingam, S., Kirupha, S. D., Murugesan, A., Vidhyadevi, T., & Sivanesan, S. (2011). Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal, 167(1), 122–131. https://doi.org/10.1016/j.cej.2010.12.01010.1016/j.cej.2010.12.010Search in Google Scholar

[12] Dakiky, M., Khamis, M., Manassra, A., & Mer’eb, M. (2002). Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6(4), 533–540. https://doi.org/10.1016/S1093-0191(01)00079-X10.1016/S1093-0191(01)00079-XSearch in Google Scholar

[13] Yang, S., Wu, Y., Aierken, A., Zhang, M., Fang, P., Fan, Y., & Ming, Z. (2016). Mono/competitive adsorption of Arsenic(III) and Nickel(II) using modified green tea waste. Journal of the Taiwan Institute of Chemical Engineers, 60, 213–221. https://doi.org/10.1016/j.jtice.2015.07.00710.1016/j.jtice.2015.07.007Search in Google Scholar

[14] Moubarik, A., & Grimi, N. (2015). Valorization of olive stone and sugar cane bagasse byproducts as biosorbents for the removal of cadmium from aqueous solution. Food Research International, 73, 169–175. https://doi.org/10.1016/j.foodres.2014.07.05010.1016/j.foodres.2014.07.050Search in Google Scholar

[15] Krishnani, K. K., Meng, X., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153(3), 1222–1234. https://doi.org/10.1016/j.jhazmat.2007.09.11310.1016/j.jhazmat.2007.09.113Search in Google Scholar

[16] Holub, M., & Balintova, M. (2014). Using of zeolite for copper and zinc removal under acidic conditions. Pollack Periodica, 9, 141–149. https://doi.org/10.1556/Pollack.9.2014.2.1410.1556/Pollack.9.2014.2.14Search in Google Scholar

[17] Shin, E. W., Karthikeyan, K. G., & Tshabalala, M. A. (2007). Adsorption mechanism of cadmium on juniper bark and wood. Bioresource Technology. Vol. 98 (2007): Pages 588-594.https://www.fs.usda.gov/treesearch/pubs/2710510.1016/j.biortech.2006.02.024Search in Google Scholar

[18] Demcak, S., Balintova, M., Demcakova, M., Csach, K., Zinicovscaia, I., Yushin, N., & Frontasyeva, M. (2019). Effect of alkaline treatment of wooden sawdust for the removal of heavy metals from aquatic environments. DESALINATION AND WATER TREATMENT, 155, 207–215. https://doi.org/10.5004/dwt.2019.2405310.5004/dwt.2019.24053Search in Google Scholar

[19] Memon, S. Q., Memon, N., Solangi, A. R., & Memon, J.-R. (2008). Sawdust: A green and economical sorbent for thallium removal. Chemical Engineering Journal, 140(1–3), 235–240. https://doi.org/10.1016/j.cej.2007.09.04410.1016/j.cej.2007.09.044Search in Google Scholar

[20] Shukla, A., Zhang, Y.-H., Dubey, P., Margrave, J. L., & Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials, 95(1–2), 137–152. https://doi.org/10.1016/S0304-3894(02)00089-410.1016/S0304-3894(02)00089-4Search in Google Scholar

[21] Argun, M. E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Journal of Hazardous Materials, 141(1), 77–85. https://doi.org/10.1016/j.jhazmat.2006.06.09510.1016/j.jhazmat.2006.06.095Search in Google Scholar

[22] Bulut, Y., & Tez, Z. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, 19(2), 160–166. https://doi.org/10.1016/S1001-0742(07)60026-610.1016/S1001-0742(07)60026-6Search in Google Scholar

[23] Kovacova, Z. (2019). Study of zinc removal from water solutions using hornbeam wooden sawdust. IOP Conference Series: Materials Science and Engineering, 566, 012019. https://doi.org/10.1088/1757-899X/566/1/01201910.1088/1757-899X/566/1/012019Search in Google Scholar

[24] Bodirlau, R., & Teaca, C. (2009). Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. 54, 93–104.Search in Google Scholar

[25] Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a00410.1021/ja02242a004Search in Google Scholar

[26] Freundlich, H.M. (1906) Over the Adsorption in Solution. Journal of Physical Chemistry A, 57, 385-470.Search in Google Scholar

[27] Tempkin, M. J., & Pyozhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochim URSS 12, 217-222.Search in Google Scholar

[28] Dubinin, M.M. and Radushkevich, L.V. (1947) The Equation of the Characteristic Curve of Activated Charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331.Search in Google Scholar

[29] Owen, N. L., & Thomas, D. W. (1989). Infrared Studies of “Hard” and “Soft” Woods. Applied Spectroscopy, 43(3), 451–455. https://doi.org/10.1366/000370289420276010.1366/0003702894202760Search in Google Scholar

[30] Zhu, G., Xing, X., Wang, J., & Zhang, X. (2017). Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass-derived activated carbon. Journal of Materials Science, 52(13), 7664–7676. https://doi.org/10.1007/s10853-017-1055-010.1007/s10853-017-1055-0Search in Google Scholar

[31] Demcak, S., Balintova, M., Hurakova, M., Frontasyeva, M. V., Zinicovscaia, I., & Yushin, N. (2017). Utilization of poplar wood sawdust for heavy metals removal from model solutions. Nova Biotechnologica et Chimica, 16(1), 26–31. https://doi.org/10.1515/nbec-2017-000410.1515/nbec-2017-0004Search in Google Scholar

eISSN:
1338-7278
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other