INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res. 1996;8(2):47-52. Search in Google Scholar

2. Boolell M, Gepi-Attee S, Gingell JC, Allen MJ. Sildenafil, a novel effective oral therapy for male erectile dysfunction. Br J Urol. 1996;78(2):257-61.10.1046/j.1464-410X.1996.10220.x Search in Google Scholar

3. Goldstein I, Lue TF, Padma-Nathan H, Rosen RC, Steers WD, Wicker PA. Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. N Engl J Med. 1998; 338(20): 1397-404.10.1056/NEJM199805143382001 Search in Google Scholar

4. FDA approves oral therapy for erectile dysfunction. Am J Health Syst Pharm. 1998;55(10):981-98410.1093/ajhp/55.10.981a Search in Google Scholar

5. Hellstrom WJ, Gittelman M, Karlin G, Segerson T, Thibonnier M, Taylor T, Padma-Nathan H; Vardenafil Study Group. Sustained efficacy and tolerability of vardenafil, a highly potent selective phosphodiesterase type 5 inhibitor, in men with erectile dysfunction: results of a randomized, double-blind, 26-week placebo-controlled pivotal trial. Urology. 2003;61(4 Suppl 1):8-14.10.1016/S0090-4295(03)00115-8 Search in Google Scholar

6. Govier F, Potempa AJ, Kaufman J, Denne J, Kovalenko P, Ahuja S. A multicenter, randomized, double-blind, crossover study of patient preference for tadalafil 20 mg or sildenafil citrate 50 mg during initiation of treatment for erectile dysfunction. Clin Ther. 2003 Nov;25(11):2709-23.10.1016/S0149-2918(03)80328-4 Search in Google Scholar

7. Limin M, Johnsen N, Hellstrom WJ. Avanafil, a new rapid-onset phosphodiesterase 5 inhibitor for the treatment of erectile dysfunction. Expert Opin Investig Drugs. 2010;19(11):1427-37.10.1517/13543784.2010.51895520939743 Search in Google Scholar

8. Mendes GD, dos Santos Filho HO, dos Santos Pereira A, Mendes FD, Ilha JO, Alkharfy KM, et al. A Phase I clinical trial of lodenafil carbonate, a new phosphodiesterase Type 5 (PDE5) inhibitor, in healthy male volunteers. Int J Clin Pharmacol Ther. 2012;50(12):896-906.10.5414/CP20162423073140 Search in Google Scholar

9. Moon KH, Kim SW, Moon du G, Kim JJ, Park NC, Lee SW, et al. A Phase 3 Study to Evaluate the 1-Year Efficacy and Safety of Udenafil 75 mg Once Daily in Patients With Erectile Dysfunction. J Sex Med. 2016;13(8):1263-9.10.1016/j.jsxm.2016.05.01127319276 Search in Google Scholar

10. Du W, Li J, Fan N, Shang P, Wang Z, Ding H. Efficacy and safety of mirodenafil for patients with erectile dysfunction: a meta-analysis of three multicenter, randomized, double-blind, placebo-controlled clinical trials. Aging Male. 2014;17(2):107-11.10.3109/13685538.2013.85811424219508 Search in Google Scholar

11. Hwang IC, Kim YJ, Park JB, Yoon YE, Lee SP, Kim HK, et al. Pulmonary hemodynamics and effects of phosphodiesterase type 5 inhibition in heart failure: a meta-analysis of randomized trials. BMC Cardiovasc Disord. 2017;17(1):150.10.1186/s12872-017-0576-4546895128606099 Search in Google Scholar

12. Anderson SG, Hutchings DC, Woodward M, Rahimi K, Rutter MK, Kirby M, et al. Phosphodiesterase type-5 inhibitor use in type 2 diabetes is associated with a reduction in all-cause mortality. Heart. 2016;102(21):1750-1756.10.1136/heartjnl-2015-309223 Search in Google Scholar

13. Wang L, Chopp M, Szalad A, Jia L, Lu X, Lu M, et al. Sildenafil ameliorates long term peripheral neuropathy in type II diabetic mice. PLoS One. 2015;10(2):e0118134.10.1371/journal.pone.0118134 Search in Google Scholar

14. Wang L, Chopp M, Szalad A, Liu Z, Bolz M, Alvarez FM, et al. Phosphodiesterase- 5 is a therapeutic target for peripheral neuropathy in diabetic mice. Neuroscience. 2011; 193: 399-410.10.1016/j.neuroscience.2011.07.039 Search in Google Scholar

15. El-Mahdy NA, El-Sayad Mel-S, El-Kadem AH. Combination of telmisartan with sildenafil ameliorate progression of diabetic nephropathy in streptozotocin-induced diabetic model. Biomed Pharmacother. 2016; 81: 136-44.10.1016/j.biopha.2016.04.001 Search in Google Scholar

16. Afsar B, Ortiz A, Covic A, Gaipov A, Esen T, Goldsmith D, et al. Phosphodiesterase type 5 inhibitors and kidney disease. Int Urol Nephrol. 2015; 47(9): 1521-8.10.1007/s11255-015-1071-4 Search in Google Scholar

17. Zhang R, Wang Y, Zhang L, Zhang Z, Tsang W, Lu M, et al. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke. 2002; 33(11): 2675-80.10.1161/01.STR.0000034399.95249.59 Search in Google Scholar

18. Ding G, Jiang Q, Li L, Zhang L, Zhang Z, Lu M, et al. Longitudinal magnetic resonance imaging of sildenafil treatment of embolic stroke in aged rats. Stroke. 2011; 42(12): 3537-41.10.1161/STROKEAHA.111.622092 Search in Google Scholar

19. Zhang L, Zhang Z, Zhang RL, Cui Y, LaPointe MC, Silver B, et al. Tadalafil, a long-acting type 5 phosphodiesterase isoenzyme inhibitor, improves neurological functional recovery in a rat model of embolic stroke. Brain Res. 2006; 1118(1): 192-8.10.1016/j.brainres.2006.08.028 Search in Google Scholar

20. Ölmestig JNE, Marlet IR, Hainsworth AH, Kruuse C. Phosphodiesterase 5 inhibition as a therapeutic target for ischemic stroke: A systematic review of preclinical studies. Cell Signal. 2017;38:39-48.10.1016/j.cellsig.2017.06.015 Search in Google Scholar

21. Ghofrani HA, Wiedemann R, Rose F, Schermuly RT, Olschewski H, Weissmann N, et al. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet. 2002; 360(9337): 895-900.10.1016/S0140-6736(02)11024-5 Search in Google Scholar

22. Kumazoe M, Sugihara K, Tsukamoto S, Huang Y, Tsurudome Y, Suzuki T, et al. 67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis. J Clin Invest. 2013;123(2):787-99.10.1172/JCI64768356182423348740 Search in Google Scholar

23. Marques JG, Gaspar VM, Markl D, Costa EC, Gallardo E, Correia IJ. Co-delivery of Sildenafil (Viagra(®)) and Crizotinib for synergistic and improved anti-tumoral therapy. Pharm Res. 2014; 31(9): 2516-28.10.1007/s11095-014-1347-x24623484 Search in Google Scholar

24. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58(3):488-520.10.1124/pr.58.3.516968949 Search in Google Scholar

25. Yoo TH, Pedigo CE, Guzman J, Correa-Medina M, Wei C, Villarreal R, et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol. 2015; 26(1): 133-47.10.1681/ASN.2013111213427973624925721 Search in Google Scholar

26. Amirjanians M, Egemnazarov B, Sydykov A, Kojonazarov B, Brandes R, Luitel H, et al. Chronic intratracheal application of the soluble guanylyl cyclase stimulator BAY 41-8543 ameliorates experimental pulmonary hypertension. Oncotarget. 2017; 8(18): 29613-29624.10.18632/oncotarget.16769544469028410199 Search in Google Scholar

27. Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N, Holewinski R, et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature. 2015; 519(7544): 472-6.10.1038/nature14332437660925799991 Search in Google Scholar

28. Matsui H, Sopko NA, Hannan JL, Bivalacqua TJ. Pathophysiology of erectile dysfunction. Curr Drug Targets. 2015; 16(5): 411-9.10.2174/13894501160515050411404125950641 Search in Google Scholar

29. Movsesian MA, Kukreja RC. Phosphodiesterase inhibition in heart failure. Handb Exp Pharmacol. 2011; (204): 237-49.10.1007/978-3-642-17969-3_1021695643 Search in Google Scholar

30. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006; 58(3): 488-520.10.1124/pr.58.3.5 Search in Google Scholar

31. Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995; 75(4): 725-48.10.1152/physrev.1995.75.4.7257480160 Search in Google Scholar

32. Boswell-Smith V, Spina D, Page CP. Phosphodiesterase inhibitors. Br J Pharmacol. 2006; 147 (Suppl 1): S252-7.10.1038/sj.bjp.0706495 Search in Google Scholar

33. Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 2011; 91(2): 651-90.10.1152/physrev.00030.2010 Search in Google Scholar

34. Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis. 2015; 21(1): e25-50.10.1111/odi.12275 Search in Google Scholar

35. Coquil JF, Franks DJ, Wells JN, Dupuis M, Hamet P. Characteristics of a new binding protein distinct from the kinase for guanosine 3’:5’-monophosphate in rat platelets. Biochim Biophys Acta. 1980; 631(1): 148-65.10.1016/0304-4165(80)90063-X Search in Google Scholar

36. Francis SH, Lincoln TM, Corbin JD. Characterization of a novel cGMP binding protein from rat lung. J Biol Chem. 1980; 255(2): 620-6.10.1016/S0021-9258(19)86221-X Search in Google Scholar

37. Kotera J, Fujishige K, Omori K. Immunohistochemical localization of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in rat tissues. J Histochem Cytochem. 2000; 48(5): 685-93.10.1177/00221554000480051210769052 Search in Google Scholar

38. Shimizu-Albergine M, Rybalkin SD, Rybalkina IG, Feil R, Wolfsgruber W, Hofmann F, et al. Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): in vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMPdependent protein kinase (PKG) activation. J Neurosci. 2003; 23(16): 6452-9.10.1523/JNEUROSCI.23-16-06452.2003 Search in Google Scholar

39. Akand M, Gencer E, Yaman Ö, Erişgen G, Tekin D, Özdiler E. Effect of sildenafil on platelet function and platelet cGMP of patients with erectile dysfunction. Andrologia. 2015; 47(10): 1098-102.10.1111/and.1238725486996 Search in Google Scholar

40. Sasser JM, Ni XP, Humphreys MH, Baylis C. Increased renal phosphodiesterase-5 activity mediates the blunted natriuretic response to a nitric oxide donor in the pregnant rat. Am J Physiol Renal Physiol. 2010; 299(4): F810-4.10.1152/ajprenal.00117.2010295726120668100 Search in Google Scholar

41. Santos AI, Carreira BP, Nobre RJ, Carvalho CM, Araújo IM. Stimulation of neural stem cell proliferation by inhibition of phosphodiesterase 5. Stem Cells Int. 2014; 2014: 878397.10.1155/2014/878397391448024550991 Search in Google Scholar

42. Peixoto CA, Nunes AK, Garcia-Osta A. Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition. Mediators Inflamm. 2015; 2015: 940207.10.1155/2015/940207468182526770022 Search in Google Scholar

43. Murthy KS. Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle. Biochem J. 2001; 360(Pt 1): 199-208.10.1042/bj3600199 Search in Google Scholar

44. Dhooghe B, Noël S, Bouzin C, Behets-Wydemans G, Leal T. Correction of chloride transport and mislocalization of CFTR protein by vardenafil in the gastrointestinal tract of cystic fibrosis mice. PLoS One. 2013; 8(10): e77314.10.1371/journal.pone.0077314381197724204804 Search in Google Scholar

45. Turko IV, Francis SH, Corbin JD. Studies of the molecular mechanism of discrimination between cGMP and cAMP in the allosteric sites of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). J Biol Chem. 1999; 274(41): 29038-41.10.1074/jbc.274.41.2903810506154 Search in Google Scholar

46. Kotera J, Francis SH, Grimes KA, Rouse A, Blount MA, Corbin JD. Allosteric sites of phosphodiesterase-5 sequester cyclic GMP. Front Biosci. 2004; 9: 378-86.10.2741/123114766375 Search in Google Scholar

47. Corbin JD, Turko IV, Beasley A, Francis SH. Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem. 2000; 267(9): 2760-7.10.1046/j.1432-1327.2000.01297.x10785399 Search in Google Scholar

48. Francis SH, Bessay EP, Kotera J, Grimes KA, Liu L, Thompson WJ, et al. Phosphorylation of isolated human phosphodiesterase-5 regulatory domain induces an apparent conformational change and increases cGMP binding affinity. J Biol Chem. 2002; 277(49): 47581-7.10.1074/jbc.M20608820012359732 Search in Google Scholar

49. Al-Shboul O, Mahavadi S, Sriwai W, Grider JR, Murthy KS. Differential expression of multidrug resistance protein 5 and phosphodiesterase 5 and regulation of cGMP levels in phasic and tonic smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2013; 305(4): G314-24.10.1152/ajpgi.00457.2012389121123764893 Search in Google Scholar

50. Castro LR, Schittl J, Fischmeister R. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes. Circ Res. 2010; 107(10): 1232-40.10.1161/CIRCRESAHA.110.22671220847310 Search in Google Scholar

51. Mullershausen F, Lange A, Mergia E, Friebe A, Koesling D. Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. Mol Pharmacol. 2006; 69(6): 1969-74.10.1124/mol.105.02090916510560 Search in Google Scholar

52. Stegbauer J, Friedrich S, Potthoff SA, Broekmans K, Cortese-Krott MM, Quack I, et al. Phosphodiesterase 5 attenuates the vasodilatory response in renovascular hypertension. PLoS One. 2013; 8(11): e80674.10.1371/journal.pone.0080674382987224260450 Search in Google Scholar

53. Lin CS. Phosphodiesterase type 5 regulation in the penile corpora cavernosa. J Sex Med. 2009; 6 Suppl 3: 203-9.10.1111/j.1743-6109.2008.01179.x19267844 Search in Google Scholar

54. Murthy KS. Contractile agonists attenuate cGMP levels by stimulating phosphorylation of cGMP-specific PDE5; an effect mediated by RhoA/PKC-dependent inhibition of protein phosphatase 1. Br J Pharmacol. 2008; 153(6): 1214-24.10.1038/sj.bjp.0707686227544118204475 Search in Google Scholar

55. Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA. Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem. 2002; 277(5): 3310-7.10.1074/jbc.M10656220011723116 Search in Google Scholar

56. Frame MJ, Tate R, Adams DR, Morgan KM, Houslay MD, Vandenabeele P, Pyne NJ. Interaction of caspase-3 with the cyclic GMP binding cyclic GMP specific phosphodiesterase (PDE5a1). Eur J Biochem. 2003; 270(5): 962-70.10.1046/j.1432-1033.2003.03464.x12603329 Search in Google Scholar

57. Lin CS. Tissue expression, distribution, and regulation of PDE5. Int J Impot Res. 2004; 16 Suppl 1: S8-S10.10.1038/sj.ijir.390120715224128 Search in Google Scholar

58. Reffelmann T, Kloner RA. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation. 2003; 108(2): 239-44.10.1161/01.CIR.0000081166.87607.E212860892 Search in Google Scholar

59. Sopory S, Kaur T, Visweswariah SS. The cGMP-binding, cGMP-specific phosphodiesterase (PDE5): intestinal cell expression, regulation and role in fluid secretion. Cell Signal. 2004; 16(6): 681-9210.1016/j.cellsig.2003.11.00415093609 Search in Google Scholar

60. Scipioni A, Giorgi M, Nuccetelli V, Stefanini S. Immunohistochemical localisation of PDE5 in rat lung during pre- and postnatal development. J Biomed Biotechnol. 2009; 2009: 932961.10.1155/2009/932961273047219707527 Search in Google Scholar

61. Kedia GT, Ückert S, Oelke M, Sonnenberg JE, Sohn M, Kuczyk MA, Hedlund P. Expression and distribution of phosphodiesterase isoenzymes in the human male urethra. Urology. 2015; 85(4): 964.e1-6.10.1016/j.urology.2014.12.03025704994 Search in Google Scholar

62. Fibbi B, Morelli A, Vignozzi L, Filippi S, Chavalmane A, De Vita G, Marini M, Gacci M, Vannelli GB, Sandner P, Maggi M. Characterization of phosphodiesterase type 5 expression and functional activity in the human male lower urinary tract. J Sex Med. 2010; 7(1 Pt 1): 59-69.10.1111/j.1743-6109.2009.01511.x19796053 Search in Google Scholar

63. Zhu B, Vemavarapu L, Thompson WJ, Strada SJ. Suppression of cyclic GMP-specific phosphodiesterase 5 promotes apoptosis and inhibits growth in HT29 cells. J Cell Biochem. 2005; 94(2): 336-50.10.1002/jcb.2028615526282 Search in Google Scholar

64. Li Q, Shu Y. Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res. 2014; 31(1): 86-96.10.1007/s11095-013-1134-0386461423884568 Search in Google Scholar

65. Catalano S, Campana A, Giordano C, Győrffy B, Tarallo R, Rinaldi A, Bruno G, Ferraro A, Romeo F, Lanzino M, Naro F, Bonofiglio D, Andò S, Barone I. Expression and Function of Phosphodiesterase Type 5 in Human Breast Cancer Cell Lines and Tissues: Implications for Targeted Therapy. Clin Cancer Res. 2016; 22(9): 2271-82.10.1158/1078-0432.CCR-15-190026667489 Search in Google Scholar

66. Hamilton TK, Hu N, Kolomitro K, Bell EN, Maurice DH, Graham CH, Siemens DR. Potential therapeutic applications of phosphodiesterase inhibition in prostate cancer. World J Urol. 2013; 31(2): 325-30.10.1007/s00345-012-0848-722383129 Search in Google Scholar

67. Piazza GA, Thompson WJ, Pamukcu R, Alila HW, Whitehead CM, Liu L, Fetter JR, Gresh WE Jr, Klein-Szanto AJ, Farnell DR, Eto I, Grubbs CJ. Exisulind, a novel proapoptotic drug, inhibits rat urinary bladder tumorigenesis. Cancer Res. 2001; 61(10): 3961-8. Search in Google Scholar

68. Karami-Tehrani F, Moeinifard M, Aghaei M, Atri M. Evaluation of PDE5 and PDE9 expression in benign and malignant breast tumors. Arch Med Res. 2012; 43(6): 470-5.10.1016/j.arcmed.2012.08.00622960860 Search in Google Scholar

69. Booth L, Roberts JL, Cruickshanks N, Conley A, Durrant DE, Das A, Fisher PB, Kukreja RC, Grant S, Poklepovic A, Dent P. Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol Pharmacol. 2014; 85(3): 408-19.10.1124/mol.113.090043393515524353313 Search in Google Scholar

70. Marino N, Collins JW, Shen C, Caplen NJ, Merchant AS, Gökmen-Polar Y, Goswami CP, Hoshino T, Qian Y, Sledge GW Jr, Steeg PS. Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines. Clin Exp Metastasis. 2014; 31(7): 771-86.10.1007/s10585-014-9667-0494875325086928 Search in Google Scholar

71. Ryu YK, Lee MH, Lee J, Lee JW, Jang SJ, Kang JH, Moon EY. γ-Irradiated cancer cells promote tumor growth by activation of Toll-like receptor 1-mediated inducible nitric oxide synthase in macrophages. J Leukoc Biol. 2015; 97(4): 711-21.10.1189/jlb.3A0114-055R25632046 Search in Google Scholar

72. Li L, Zhu L, Hao B, Gao W, Wang Q, Li K, Wang M, Huang M, Liu Z, Yang Q, Li X, Zhong Z, Huang W, Xiao G, Xu Y, Yao K, Liu Q. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget. 2017; 8(20): 33047-33063.10.18632/oncotarget.16523546484928380434 Search in Google Scholar

73. Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY, Glynn SA, Ambs S, Wink DA, Ridnour LA. Nitric Oxide Synthase-2-Derived Nitric Oxide Drives Multiple Pathways of Breast Cancer Progression. Antioxid Redox Signal. 2017; 26(18): 1044-1058.10.1089/ars.2016.6813548834827464521 Search in Google Scholar

74. Liu Y, Wang Y, Hu Y, Ge S, Li K, Wang S, Li L. The apoptotic inducible effects of salicylic acid on hepatoma cell line: relationship with nitric oxide signaling. J Cell Commun Signal. 2017. doi: 10.1007/s12079-017-0380-z.10.1007/s12079-017-0380-z555939428185215 Search in Google Scholar

75. Günzle J, Osterberg N, Saavedra JE, Weyerbrock A. Nitric oxide released from JS-K induces cell death by mitotic catastrophe as part of necrosis in glioblastoma multiforme. Cell Death Dis. 2016; 7(9): e2349.10.1038/cddis.2016.254505985827584787 Search in Google Scholar

76. Burke AJ, Sullivan FJ, Giles FJ, Glynn SA. The yin and yang of nitric oxide in cancer progression. Carcinogenesis. 2013; 34(3): 503-12.10.1093/carcin/bgt03423354310 Search in Google Scholar

77. Cheng H, Wang L, Mollica M, Re AT, Wu S, Zuo L. Nitric oxide in cancer metastasis. Cancer Lett. 2014; 353(1): 1-7.10.1016/j.canlet.2014.07.014415083725079686 Search in Google Scholar

78. Bian K, Murad F. Nitric oxide (NO)--biogeneration, regulation, and relevance to human diseases. Front Biosci. 2003; 8: d264-78.10.2741/99712456375 Search in Google Scholar

79. Bian K, Ghassemi F, Sotolongo A, Siu A, Shauger L, Kots A, Murad F. NOS-2 signaling and cancer therapy. IUBMB Life. 2012; 64(8): 676-83.10.1002/iub.105722715033 Search in Google Scholar

80. Chang WL, Masih S, Thadi A, Patwa V, Joshi A, Cooper HS, Palejwala VA, Clapper ML, Shailubhai K. Plecanatide-mediated activation of guanylate cyclase-C suppresses inflammation-induced colorectal carcinogenesis in Apc(+/Min-FCCC) mice. World J Gastrointest Pharmacol Ther. 2017;8(1):47-59.10.4292/wjgpt.v8.i1.47529260628217374 Search in Google Scholar

81. Cesarini V, Martini M, Vitiani LR, Gravina GL, Di Agostino S, Graziani G, D’Alessandris QG, Pallini R, Larocca LM, Rossi P, Jannini EA, Dolci S. Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome. Oncotarget. 2017;8(8):13223-13239.10.18632/oncotarget.14656535509128099939 Search in Google Scholar

82. Bian K, Murad F. sGC-cGMP signaling: target for anticancer therapy. Adv Exp Med Biol. 2014;814:5-13.10.1007/978-1-4939-1031-1_225015797 Search in Google Scholar

83. Crocetti E. (2015). Centre for Parliamentary Studies. Retrieved November 15th 2017, from https://ec.europa.eu/jrc/en/publication/epidemiology-prostate-cancer-europe Search in Google Scholar

84. Hirik E, Bozkurt A, Karabakan M, Onuk Ö, Balcı MB, Aydın M, Çakan M, Nuhoglu B. Results of tadalafil treatment in patients following an open nerve-sparing radical prostatectomy. Arch Ital Urol Androl. 2016; 88(1): 4-6.10.4081/aiua.2016.1.427072168 Search in Google Scholar

85. Liu N, Mei L, Fan X, Tang C, Ji X, Hu X, Shi W, Qian Y, Hussain M, Wu J, Wang C, Lin S, Wu X. Phosphodiesterase 5/protein kinase G signal governs stemness of prostate cancer stem cells through Hippo pathway. Cancer Lett. 2016; 378(1): 38-50.10.1016/j.canlet.2016.05.01027179930 Search in Google Scholar

86. Das A, Durrant D, Mitchell C, Dent P, Batra SK, Kukreja RC. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget. 2016; 7(4): 4399-413.10.18632/oncotarget.6749482621426716643 Search in Google Scholar

87. Koka S, Das A, Zhu SG, Durrant D, Xi L, Kukreja RC. Long-acting phosphodiesterase-5 inhibitor tadalafil attenuates doxorubicin-induced cardiomyopathy without interfering with chemotherapeutic effect. J Pharmacol Exp Ther. 2010; 334(3): 1023-30.10.1124/jpet.110.170191293967320543097 Search in Google Scholar

88. Ammirante M, Shalapour S, Kang Y, Jamieson CA, Karin M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci U S A. 2014; 111(41):14776-81.10.1073/pnas.1416498111420563725267627 Search in Google Scholar

89. Chavez AH, Scott Coffield K, Hasan Rajab M, Jo C. Incidence rate of prostate cancer in men treated for erectile dysfunction with phosphodiesterase type 5 inhibitors: retrospective analysis. Asian J Androl. 2013; 15(2): 246-8.10.1038/aja.2012.162373916223353723 Search in Google Scholar

90. Jamnagerwalla J, Howard LE, Vidal AC, Moreira DM, Castro-Santamaria R, Andriole GL, Freedland SJ. The Association between Phosphodiesterase Type 5 Inhibitors and Prostate Cancer: Results from the REDUCE Study. J Urol. 2016; 196(3): 715-20.10.1016/j.juro.2016.03.172501469527060053 Search in Google Scholar

91. Jo JK, Kim K, Lee SE, Lee JK, Byun SS, Hong SK. Phosphodiesterase Type 5 Inhibitor Use Following Radical Prostatectomy is not Associated with an Increased Risk of Biochemical Recurrence. Ann Surg Oncol. 2016; 23(5): 1760-7.10.1245/s10434-015-5059-126717939 Search in Google Scholar

92. Michl U, Molfenter F, Graefen M, Tennstedt P, Ahyai S, Beyer B, Budäus L, Haese A, Heinzer H, Oh SJ, Salomon G, Schlomm T, Steuber T, Thederan I, Huland H, Tilki D. Use of phosphodiesterase type 5 inhibitors may adversely impact biochemical recurrence after radical prostatectomy. J Urol. 2015; 193(2): 479-83.10.1016/j.juro.2014.08.11125196656 Search in Google Scholar

93. Zhang R, Wang Y, Zhang L, Zhang Z, Tsang W, Lu M, Zhang L, Chopp M. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke. 2002; 33(11): 2675-80.10.1161/01.STR.0000034399.95249.5912411660 Search in Google Scholar

94. Koneru S, Varma Penumathsa S, Thirunavukkarasu M, Vidavalur R, Zhan L, Singal PK, Engelman RM, Das DK, Maulik N. Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: role of VEGF/angiopoietin-1. J Cell Mol Med. 2008; 12(6B): 2651-64.10.1111/j.1582-4934.2008.00319.x382888118373738 Search in Google Scholar

95. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS. Autonomic nerve development contributes to prostate cancer progression. Science. 2013; 341(6142): 1236361.10.1126/science.123636123846904 Search in Google Scholar

96. Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev. 2017. doi: 10.1002/med.21452.10.1002/med.2145228643862 Search in Google Scholar

97. El-Naa MM, Othman M, Younes S. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis. Drug Des Devel Ther. 2016; 10: 3661-3672.10.2147/DDDT.S107490511787327895461 Search in Google Scholar

98. Bora GS, Gupta VG, Mavuduru RS. Re: Use of Phosphodiesterase Type 5 Inhibitors May Adversely Impact Biochemical Recurrence after Radical Prostatectomy: U. Michl, F. Molfenter, M. Graefen, P. Tennstedt, S. Ahyai, B. Beyer, L. Budäus, A. Haese, H. Heinzer, S. J. Oh, G. Salomon, T. Schlomm, T. Steuber, I. Thederan, H. Huland and D. Tilki J Urol 2015; 193: 479-483. J Urol. 2016; 195(3): 804;10.1016/j.juro.2015.08.10326627733 Search in Google Scholar

99. Gallina A, Bianchi M, Gandaglia G, Cucchiara V, Suardi N, Montorsi F, Briganti A. A Detailed Analysis of the Association Between Postoperative Phosphodiesterase Type 5 Inhibitor Use and the Risk of Biochemical Recurrence After Radical Prostatectomy. Eur Urol. 2015; 68(5): 750-3.10.1016/j.eururo.2015.02.00225700565 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other