INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Haque, M. U., Ferdiousi, N. & Sajon, S. R. (2016). Anticancer agents derived from plant and dietary sources: a review. International Journal of Pharmacognosy 32, 55–66.Search in Google Scholar

2. Reedijk, J. (2009). Platinum Anticancer Coordination Compounds: Study of DNA Binding Inspires New Drug Design. Eur. J. Inorg. Chem. 10, 1303–1312.10.1002/ejic.200900054Search in Google Scholar

3. Coluccia, M. & and Natile, G. (2007). Trans-platinum complexes in cancer therapy. Anti-Cancer Agents Med. Chem. 7, 111–123.10.2174/18715200777931408017266508Search in Google Scholar

4. Wang, X. Y. & Guo, Z. J. (2008). Towards the rational design of platinum(II) and gold(III) complexes as antitumour agents. Dalton Trans. 1521–1532.10.1039/B715903J18335133Search in Google Scholar

5. Kapoor, L.D. (1990). Handbook of Ayurvedic Medicinal Plants, Boca Raton, Florida, CRC Press, 416–417.Search in Google Scholar

6. Hassan, M, Watari H., Almaaty, A. A., Yusuke Ohba, Y. & Sakuragi, N. (2014). Apoptosis and Molecular Targeting Therapy in Cancer. BioMed Res. Int., Article ID 150845, 23 pp.10.1155/2014/150845407507025013758Search in Google Scholar

7. Olszewski, U. & Hamilton, G. (2010). A better platinum-based anticancer drug yet to come? Med. Chem. 10, 293–301.10.2174/187152010791162306Search in Google Scholar

8. Weiss, R. B. & Christian, M. C. (1993) New Cisplatin Analogues in Development. Drugs 46, 360–37710.2165/00003495-199346030-000037693428Search in Google Scholar

9. Ott, I. & Gust, R. (2007). Preclinical and clinical studies on the use of platinum complexes for breast cancer treatment. Med. Chem. 7, 95–110.10.2174/18715200777931407117266507Search in Google Scholar

10. Williams, R. (2011). Discontinued drugs in 2010: oncology drugs. Expert. Opin. Invest. Drugs 20, 1479–1496.10.1517/13543784.2011.62369721955127Search in Google Scholar

11. Van den Berg, J. H., Beijnen, J. H., Balm, A. J. M. & Schellens, J. H. M. (2006). Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat. Rev. 32, 390–397.10.1016/j.ctrv.2006.04.01116781082Search in Google Scholar

12. Pabla, N. & Dong, Z. (2008). Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 73, 994–1007.10.1038/sj.ki.500278618272962Search in Google Scholar

13. McWhinney, S. R., Goldberg, R. M. & McLeod, H. L. (2009). Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther. 8, 10–16.10.1158/1535-7163.MCT-08-0840265182919139108Search in Google Scholar

14. Gómez-Ruiz, S., Maksimović-Ivanić, D., Mijatović, S. & Kaluđerović, G. N. (2012). On the Discovery, Biological Effects, and Use of Cisplatin and Metallocenes in Anticancer Chemotherapy. Bioinorg. Chem. Appl. article ID 140284, 1–14.10.1155/2012/140284340152422844263Search in Google Scholar

15. Kaluđerović, G. N. & Paschke, R. (2011). Anticancer metallotherapeutics in preclinical development. Curr. Med. Chem. 18, 4738–4752.10.2174/09298671179753530821919843Open DOISearch in Google Scholar

16. Koberle, B., Tomicic, M. T., Usanova, S. & Kaina, B. (2010). Cisplatin resistance: preclinical findings and clinical implications. Biochim. Biophys. Acta 1806, 172–182.10.1016/j.bbcan.2010.07.00420647037Search in Google Scholar

17. Lakomska, I., Fandzloch, M., Muziol, T., Liz, T. & Jezierska, J. (2013). Synthesis, characterization and antitumor properties of two highly cytotoxic ruthenium(III) complexes with bulky triazolopyrimidine ligands. Dalton Trans. 42, 6219–6226.10.1039/c2dt32216a23328694Search in Google Scholar

18. Matesans, A. I., Leitao, I. & Souza, P. (2013). Palladium(II) and platinum(II) bis(thiosemicarbazone) complexes of the 2,6-diacetylpyridine series with high cytotoxic activity in cisplatin resistant A2780cisR tumor cells and reduced toxicity. J. Inorg. Biochem. 125, 26−31.10.1016/j.jinorgbio.2013.04.00523685347Search in Google Scholar

19. Smolenski, P., Jaros, S. W., Pettinari, C., Lupidi, G., Quassinti, L., Bramucci, M., Vitali, L. A., Petrelli, D., Kochel, A. & Kirillow, A. M. (2013). New water-soluble polypyridine silver(I) derivatives of 1,3,5-triaza-7-phosphaadamantane (PTA) with significant antimicrobial and antiproliferative activities. Dalton Trans. 42, 6572−6581.10.1039/c3dt33026e23474654Search in Google Scholar

20. Bertrand, B., Bodio, E., Richard, P., Picquet, M., Gendre, P. L. & Casini, A. (2015) Gold(I) N-heterocyclic carbene complexes with an “activable” ester moiety: possible biological applications. J. Organomet. Chem. 775, 124–129.10.1016/j.jorganchem.2014.03.020Search in Google Scholar

21. Best, S. L. & Sadler, P. J. (1996) Gold drugs: mechanism of action and toxicity. Gold Bull. 29, 87–93.10.1007/BF03214741Open DOISearch in Google Scholar

22. Pantelić, N., Zmejkovski, B. B., Trifunović-Macedoljan, J., Savić, A., Stanković, D., Damjanović, A., Juranić, Z., Kaluđerović, G. N. & Sabo, T. J. (2013). Gold(III) complexes with esters of cyclohexyl-functionalized ethylenediamine-N,N’-diacetate. J. Inorg. Biochem. 128, 146–153.10.1016/j.jinorgbio.2013.08.00223988849Search in Google Scholar

23. Pantelić, N., Stanojković, T. P., Zmejkovski, B. B., Sabo, T. J. & Kaluđerović, G. N. (2015). In vitro anticancer activity of gold(III) complexes with some esters of (S,S)-ethylenediamine-N,N’-di-2-propanoic acid. Eur. J. Med. Chem. 90, 766–774.10.1016/j.ejmech.2014.12.01925528331Search in Google Scholar

24. Berners-Price, S. J. & Filipovska, A. (2011). Gold compounds as therapeutic agents for human diseases. Metallomics 3, 863–873.10.1039/c1mt00062d21755088Search in Google Scholar

25. Nardon, C. & D. Fregona, D. (2016). Gold(III) Complexes in the Oncological Preclinical Arena: From Aminoderivatives to Peptidomimetics. Curr. Top. Med. Chem. 16, 360–380.10.2174/1568026615666150827094500Search in Google Scholar

26. Warżajtis, B., Glišić, B. Đ., Savić, N. D., Pavic, A., Vojnovic, S., Veselinović, A., Nikodinovic-Runic, J., Rychlewska, U. & Djuran, M. I. (2017). Mononuclear gold(III) complexes with l-histidinecontaining dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. Dalton Trans. 46(8), 2594–2608.10.1039/C6DT04862ESearch in Google Scholar

28. Berners-Price S. J. (2011). Gold-based therapeutic agents: a new perspective, in Bioinorganic Medicinal Chemistry, ed. E. Alessio, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. DOI:10.1002/9783527633104.ch710.1002/9783527633104.ch7Open DOISearch in Google Scholar

29. Abbate, F., Orioli, P., Bruni, B., Marson, G. & Messori, L. (2000). Crystal structure and solution chemistry of the cytotoxic complex 1,2-dichloro(o-phenanthroline) gold(III) chloride. Inorg. Chim. Acta 311, 1–5.10.1016/S0020-1693(00)00299-1Search in Google Scholar

30. Bertrand, B. & and Casini, A. (2014). A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds. Dalton Trans. 43, 4209–4219.10.1039/C3DT52524DSearch in Google Scholar

31. Gabbiani, C., Casini, A. & Messori, L. (2007). Gold(III) compounds as anticancer drugs. Gold Bull. 40, 73–81.10.1007/BF03215296Search in Google Scholar

32. Wang, Y., He, Q., Sun, R., Che, C. M. & Chiu, J. F. (2005). Gold porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res. 65, 11553–11564.10.1158/0008-5472.CAN-05-2867Search in Google Scholar

33. Bindoli, A., Rigobello, M. P., Scutari, G., Gabbiani, C., Casini A. & Messori, L. (2009). Thioredoxin reductase: A target for gold compounds acting as potential anticancer drugs. Coord. Chem. Rev. 253, 1692–1707.10.1016/j.ccr.2009.02.026Search in Google Scholar

34. Petrović, V., Petrović, S. Joksić, G., Savić, J., Čolović, M., Cinellu, M. A., Massai, L., Messori L. & Vasić, V. (2014). Inhibition of Na+/K+-ATPase and cytotoxicity of a few selected gold(III) complexes. J. Inorg. Biochem. 140, 228–235.10.1016/j.jinorgbio.2014.07.015Search in Google Scholar

35. Pantelić, N., Stanković, D. M., Zmejkovski, B. B., Kaluđerović, G. N. & Sabo, T. J. (2016). Electrochemical properties of some gold(III) complexes with (S,S)-R2edda-type ligands. Int. J. Electrochem. Sci. 11, 1162–1171.10.1016/S1452-3981(23)15913-XSearch in Google Scholar

36. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63.10.1016/0022-1759(83)90303-4Open DOISearch in Google Scholar

37. Ohno, M. & Abe, T. (1991). Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J. Immunol. Methods 145, 199–203.10.1016/0022-1759(91)90327-CSearch in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other