Accesso libero

Effects of Divalent Cations on Outward Potassium Currents in Leech Retzius Nerve Cells

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Hllle B. lonic Channels of Excitable Membranes. 1992. Sinauer Associates, Inc. Sunderland, Massachusetts.Search in Google Scholar

2. Lopez E, Figueroa S, Oset-Gasque MJ, Gonzalez MP. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol. 2003; 138(5): 901-11.10.1038/sj.bjp.0705111Search in Google Scholar

3. Yuan Y, Jiang CY, Xu H, Sun Y, Hu FF, Bian JC, Liu XZ, Gu JH, Liu ZP. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS One, 2013; 8(5): e64330. doi: 10.1371/journal.pone. 0064330. Search in Google Scholar

4. Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med. 2006; 40(6): 940-51.10.1016/j.freeradbiomed.2005.10.062Search in Google Scholar

5. Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium, 2008; 43(2): 184-95.10.1016/j.ceca.2007.05.003Search in Google Scholar

6. Wang B, Du Y. Cadmium and its neurotoxic effects. Oxid Med Cell Longev. 2013; 2013: 898034. doi: 10.1155/2013/898034.Search in Google Scholar

7. Smith JB, Dwyer SD, Smith L. Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem. 1989; 264(13): 7115-8.10.1016/S0021-9258(18)83208-2Search in Google Scholar

8. Yang PM, Chen HC, Tsai JS, Lin LY. Cadmium induces Ca2+-dependent necrotic cell death through calpaintriggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factorkappaB activity. Chem Res Toxicol. 2007; 20(3): 406-15.10.1021/tx060144c17323976Search in Google Scholar

9. Son J, Lee SE, Park BS, Jung J, Park HS, Bang JY, Kang GY, Cho K. Biomarker discovery and proteomic evaluation of cadmium toxicity on collembolan species, Paronychiurus kimi (Lee). Proteomics, 2011; 11(11): 2294-307.10.1002/pmic.20090069021548089Search in Google Scholar

10. Lafuente A, Gonzalez-Carracedo A, Romero A, Can P, Esquifino AI. Cadmium exposure differentially modifies the circadian patterns of norepinephrine at the median eminence and plasma LH, FSH and testosterone levels. Toxicol Lett. 2004; 146(2): 175-82.10.1016/j.toxlet.2003.10.00414643969Search in Google Scholar

11. Vetillard A, Bailhache T. Cadmium: an endocrine disrupter that affects gene expression in the liver and brain of juvenile rainbow trout. Biol Reprod. 2005; 72(1): 119-26.10.1095/biolreprod.104.02952015317685Search in Google Scholar

12. Avila DS, Puntel RL, Aschner M. Manganese in health and disease. Met Ions Life Sci. 2013; 13: 199-227. doi: 10.1007/978-94-007-7500-8-7.Search in Google Scholar

13. Bouabid S, Tinakoua A, Lakhdar-Ghazal N, Benazzouz A. Manganese Neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem. 2015; doi: 10.1111/jnc.13442.Search in Google Scholar

14. Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-Induced Parkinsonism and Parkinson’s Disease: Shared and Distinguishable Features. Int J Environ Res Public Health, 2015; 12(7): 7519-40. doi: 10.3390/ijerph120707519.Search in Google Scholar

15. Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med. 2013; 62: 65-75. doi: 10.1016/j.freeradbiomed.2013.01.032.Search in Google Scholar

16. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952; 117(4): 500-44.10.1113/jphysiol.1952.sp004764Search in Google Scholar

17. Beleslin BB, Ristanovic D, Osmanovic S. Somatic outward currents in voltage clamp leech Retzius nerve cell. Comp Biochem Physiol. 1988; 89: 187-96.10.1016/0300-9629(88)91077-8Search in Google Scholar

18. Stewart RR, Nicholls JG, Adams WB. Na+, K+ and Ca2+ currents in identified leech neurones in culture. J Exp Biol. 1989; 141: 1-20.10.1242/jeb.141.1.1Search in Google Scholar

19. Lent CM. The Retzius cells within the central nervous system of leeches. Prog Neurobiol. 1977; 8: 81-117.10.1016/0301-0082(77)90012-0Search in Google Scholar

20. Katz GM, Schwartz TL. Temporal control of voltageclamped membranes: an examination of principles. Membr Biol. 1974; 17(3): 275-91.Search in Google Scholar

21. Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol. 2005; 204(3): 274-308. 10.1016/j.taap.2004.09.007Search in Google Scholar

22. Zalups RK, Ahmad S. Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol. 2003; 186(3): 163-88.10.1016/S0041-008X(02)00021-2Search in Google Scholar

23. Thevenod F. Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol. 2009; 238(3): 221-39.10.1016/j.taap.2009.01.01319371614Search in Google Scholar

24. Thevenod F, Lee WK. Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol. 2013; 87(10): 1743-86.10.1007/s00204-013-1110-923982889Search in Google Scholar

25. Lopin KV, Thevenod F, Page JC, Jones SW. Cd²+ block and permeation of CaV3.1 ( 1G) T-type calcium channels: candidate mechanism for Cd²+ influx. Mol Pharmacol. 2012; 82(6): 1183-93.10.1124/mol.112.08017622973059Search in Google Scholar

26. Aoki T, Baraban SC. Properties of a calcium-activated K+ current on interneurons in the developing rat hippocampus. J Neurophysiol. 2000; 83(6): 3453-61.10.1152/jn.2000.83.6.345310848561Search in Google Scholar

27. Mayer EA, Loo DD, Snape WJ, Sachs G. The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P. J Physiol. 1990; 420: 47-71.10.1113/jphysiol.1990.sp01790111900381691293Search in Google Scholar

28. Mitra R, Morad M. Ca2+ and Ca2+-activated K+ currents in mammalian gastric smooth muscle cells. Science, 1985; 229(4710): 269-72.10.1126/science.24096002409600Search in Google Scholar

29. Kawasaki S, Kimura S, Watanabe S, Fujita R, Matsumoto M, Sasaki K. Augmentinf effect of serotonin on the voltage-dependent Ca2+ current and subsequently activated K+ current in Aplysia neurons. Tohoku J Exp Med. 2007; 211(1): 31-41.10.1620/tjem.211.3117202770Search in Google Scholar

30. Sah P, Gibb AJ, Gage PW. Potassium current activated by depolarization of dissociated neurons from adult guinea pig hippocampus. J Gen Physiol. 1988; 92(2): 263-78.10.1085/jgp.92.2.26322288932844959Search in Google Scholar

31. Jow F, Numann R. Divalent ion block of inward rectifier current in human capillary endothelial cells and effects on resting membrane potential. J Physiol. 1998; 512(1): 119-28.10.1111/j.1469-7793.1998.119bf.x22311799729622Search in Google Scholar

32. Castelli L, Tanzi F, Taglietti V, Magistretti J. Cu2+, Co2+, and Mn2+ modify the gating kinetics of highvoltage- activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003; 195(3): 121-36. 10.1007/s00232-003-0614-214724759Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other