INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Tomanović S, Đukić S. (2011). Classical and molekular methodes for diagnosis of Chlamydia trachomatis infections. Med Pregl. LXIV(9-10), 477-480.10.2298/MPNS1110477TSearch in Google Scholar

2. Mascellino MT, Priscilla B, Andliva AO. (2011). Immunopathogenesis in Chlamydia trachomatis Infected Women. ISRN Obstetrics and Gynecology. ID 436935.10.5402/2011/436936Search in Google Scholar

3. Uzunović-Kamberović S. (2009). Medical Microbiology. Pressroom Fojnica d.o.o. Fojnica.Search in Google Scholar

4. Welch D. (1990). Detection of plasmid DNA from all Chlamydia trachomatis serovars with a two-step polymerase chain reaction. Apll Environ Microbiol. 8:2494-2498.Search in Google Scholar

5. Carlson JH, Whit mire WM, Crane DD, Wicke L, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Porcella SF, Martinez-Orengo N, Heinzen RA, Kari L, Caldwell HD. (2008). The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun. 76: 227310.1128/IAI.00102-08Search in Google Scholar

6. Hagan RJ, Mathews SA, Mukhopadhyay S, Summersgil JT and Timms P. (2004). Chlamydial persistence: beyond the biphasic paradigm. Infect. Immun. 7(4), 1843-1855.10.1128/IAI.72.4.1843-1855.2004Search in Google Scholar

7. Vivoda M, Cirkovic I, Đukic S. (2011). Biology and intracellulare life of Chlamydia. Med Pregl. LXIV(11-12), 561-564.10.2298/MPNS1112561VSearch in Google Scholar

8. Essig A. Chlamydia and Chlamydophila. In U: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. (2007). Manual of clinical microbiology.Washington, DC: American Society for Microbiology; 2007:1021-35.Search in Google Scholar

9. Fadel S, Eley A. (2007). Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dapendent adhesion. J. Med Microbiol. 65:15-22. Search in Google Scholar

10. Lutter EI, Martens C, Hackstadt T. (2012). Evolution and conservation of predicted inclusion membrane proteins in chlamydiae. Comp Funct Genomics. 2012:36210410.1155/2012/362104Search in Google Scholar

11. Zhang JP, Stephens RS. (1992). Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell. 69: 861-869.Search in Google Scholar

12. Galan JE, Lara-Tejero M, Marlovits TC , Wagner S. (2014). Bacterial type III secretion systems: specialised nanomachines for protein delivery into target cells Annu Rev Microbiol. 68:415-438.Search in Google Scholar

13. Mabey DC, Solomon AW, Foster A. (2003). Trachoma. Lancet. 362:223-22910.1016/S0140-6736(03)13914-1Search in Google Scholar

14. Đukić S, Nedeljković M, Pervulov M et al. (1996). Prevalence of Chlamydia trachomatis antibodies in cord blood. Infect Dis Obstet Gynecol. 4:114-5.Search in Google Scholar

15. Mpiga P, Ravaoarinoro M. (2006). Chlamydia trachomatis persistence: An update. Microbiologicyl Research. 9-19.10.1016/j.micres.2005.04.00416338585Search in Google Scholar

16. Molleken K, Schmidt E, Hegemann JH. (2010). Members of the Pmp protein family of Chlamydia pneumoniae media teadhesion to human cells via short repetitive peptidemotifs. Mol Microbiol. 78: 1004-1017.Search in Google Scholar

17. Dautry-Varsat A, Subtil A, Hackstadt T. (2005). Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol. 7:1714-1722.Search in Google Scholar

18. Abromaitis S, Stephens RS. (2009). Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog. 5: e100035710.1371/journal.ppat.1000357265571619343202Search in Google Scholar

19. Lane B, Mutchler C, Al Khodor S, Grieschaber S, Carabeo R. (2008). Chlamydial entry involves TARP binding of guanine nucleotide exchange factors PLoS Pathog. 4 p. e1000014.Search in Google Scholar

20. Jewett TJ, Fischer ER, Mead DJ, Hackstadt T. (2006). Chlamydial TARP is a bacterial nucleator of actin Proc Natl Acad Sci U S A, 103:15599-15604.10.1073/pnas.0603044103162286817028176Search in Google Scholar

21. Rzomp KA, Scholtes LD, Briggs BJ, Whittaker GR, Scidmore MA. (2003). Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect Immun. 71:5855-5870.Search in Google Scholar

22. Hackstadt T. (2000). Rediretion of host vesicle trafficking pathways by intracellular parasites. Traffic. 1: 93-9910.1034/j.1600-0854.2000.010201.x11208089Search in Google Scholar

23. Cocchiaro J L, Valdivida R H. (2009). New insights into Chlamydia intracellular survival mechanisms Cell Microbiol. 11:1571-1578.Search in Google Scholar

24. Carabeo R. (2011). Bacterial subversion of host actin dynamics at the plasma membrane. Cell Microbiol. 13: 1460-1469.Search in Google Scholar

25. Scidmore MA. (2011). Recent advances in Chlamydia subversion of host cytoskeletal and membrane trafficking pathways. Microbes Infect. 13: 527-535.Search in Google Scholar

26. Carabeo R A, Grieschaber S S, Hasenkrug A, Dooley C, Hackstadt T. (2004). Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells Traffic. 5:418-425. Search in Google Scholar

27. Carabeo RA, Dooley CA, Grieshaber SS, Hackstadt T. (2007). Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol. 9:2278-228810.1111/j.1462-5822.2007.00958.x17501982Search in Google Scholar

28. Schramm N, Bagnell CR, Wyrick PB (1996). Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells. Infect Immun. 64:1208-121410.1128/iai.64.4.1208-1214.19961739058606080Search in Google Scholar

29. Grieshaber SS, Grieshaber NA, Miller N and Hackstadt T. (2006). Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic. 7:940-949.Search in Google Scholar

30. Jewett TJ, Dooley CA, Mead DJ, Hackstadt T. (2008). Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases. Biochem Biophys Res Commun. 371:339-344.Search in Google Scholar

31. Bastidas RJ, Elwell CA, Engel JN and Raphael H. (2013). Valdivia Chlamydial Intracellular Survival Strategies. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect. a010256.Search in Google Scholar

32. Wallin KL, Wiklund F, Luostarinen T, Angstrom T, Anttila T, Bergman F et al. (2002). A population-based prospectivestudy of Chlamydia trachomatis infection and cervical carcinoma. Int J Cancer J. 101:371-374.Search in Google Scholar

33. Carabeo RA, Mead DJ, Hackstadt T. (2003). Golgidependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci. 100: 6771-6776.Search in Google Scholar

34. Elwell CA, Jiang S, Kim JH, Lee A, Wittmann T, Hanada K, Melancon P, Engel JN. (2011). Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog. 7: e1002198.Search in Google Scholar

35. Derre I, Swiss R, Agaisse H. (2011). The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog. 7: e1002092.Search in Google Scholar

36. Su H, McClarty G, Dong F, Hatch GM, Pan ZK, Zhong G. (2004). Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem. 279: 9409-9416.Search in Google Scholar

37. Thwaites T, Nogueira A, Campeotto I, Silva A, Grieshaber SS, Carabeo RA. The Chlamydia Effector TarP Mimics the Mammalian Leucine-Aspartic Acid Motif of Paxillin to Subvert the Focal Adhesion Kinase during Invasion.J Biol Chem. 289(44): 30426-30442.10.1074/jbc.M114.604876421522625193659Search in Google Scholar

38. Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH. (2008). Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci. 105:9379-9384.Search in Google Scholar

39. Kumar Y, Cocchiaro J, Valdivia RH. (2006). The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol. 16:1646-1651.Search in Google Scholar

40. Friedrich N, Hagedorn M, Soldati-Favre D, Soldati T. (2012). Prison break: pathogens’ strategies to egress from host cells. Microbiol Mol Biol Rev. 76:707-720. Search in Google Scholar

41. Hybiske K, Stephens RS. (2008). Exit strategies of intracellular pathogens. Nat Rev Microbiol. 6:99-110.Search in Google Scholar

42. Hybiske K, Stephens RS (2007). Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci U S A. 104:11430-1143510.1073/pnas.0703218104204091517592133Search in Google Scholar

43. Chin E, Kirker K, Zuck M, James G, Hybiske K. (2012). Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS ONE. 7:e46949.Search in Google Scholar

44. Ingalls RR, Rice PA, Qureshi N, Takayama K, Lin JS, Golenbock DT. (1995). The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect Immun. 63:3125-3130.Search in Google Scholar

45. Prebeck S, Kirschning C, Durr S, da Costa C, Donath B, Brand K, Redecke V, Wagner H, Miethke T. (2001). Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol. 167:3316-3323.Search in Google Scholar

46. Prebeck S, Brade H, Kirschning CJ, da Costa CP, Durr S, Wagner H, Miethke T. (2003). The Gram-negative bacterium Chlamydia trachomatis L2 stimulates tumor necrosis factor secretion by innate immune cells independently of its endotoxin. Microbes Infect. 5: 463-470.Search in Google Scholar

47. Heine H, Muller-Loennies S, Brade L, Lindner B, and Brade H. (2003). Eur. J. Biochem. 270:440-450.Search in Google Scholar

48. Bulut Y, Shimada K, Wong MH, Chen S, Gray P, Alsabeh R, Doherty TM, Crother TR, Arditi M. (2009). Chlamydial heat shock protein 60 induces acute pulmonary inflammation in mice via the Toll-like receptor 4- and MyD88-dependent pathway. Infect Immun. 77: 2683-2690.Search in Google Scholar

49. Fichorova RN, Cronin AO, Lien E, Anderson DJ, Ingalls RR (2002). J. Immunol. 168:2424-2432.Search in Google Scholar

50. Joyee AG, Yang X. (2008). Role of toll-like receptors in immune responses to chlamydial infections. Curr Pharm Des. 14(6):593-600.Search in Google Scholar

51. Ying S, Fischer SF, Pettengill M, Conte D, Paschen SA, Ojcius DM, Hacker G. (2006). Characterization of host cell death induced by Chlamydia trachomatis. Infect Immun. 74:6057-606628.Search in Google Scholar

52. Hacker G, Weber A. (2007). BH3-only proteins trigger cytochrome c release, but how? Arch Biochem Biophys. 462:150-155.Search in Google Scholar

53. Paschen SA, Christian JG, Vier J, Schmidt F, Walch A, Ojcius DM, Hacker G. (2008). Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. J Cell Biol. 182:117-125.Search in Google Scholar

54. Rajalingam K, Sharma M, Paland N, Hurwitz R, Thieck O, Oswald M, et al. (2006). IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog. 2:e114Search in Google Scholar

55. Tse SM, Mason D, Botelho RJ, Chiu B, Reyland M, Hanada K, et al. (2005). Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: possible role in the inhibition of host cell apoptosis. J Biol Chem. 280:25210-25215. Search in Google Scholar

56. Verbeke P, Welter-Stahl L, Ying S, Hansen J, Hacker G, Darville T, Ojcius DM. (2006). Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2:e45.Search in Google Scholar

57. Rajalingam K, Sharma M, Lohmann C, Oswald M, Thieck O, Froelich CJ, Rudel T. (2008). Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis- infected cells. PLoS ONE. 3:e3102.Search in Google Scholar

58. Buchholz KR, Stephens RS. (2007). The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect Immun. 75:5924-5929.Search in Google Scholar

59. Lad SP, Li J, da Silva Correia J, Pan Q, Gadwal S, Ulevitch RJ, Li E. (2007). Cleavage of p65/RelA of the NFkappaB pathway by Chlamydia. Proc Natl Acad Sci U S A. 104:2933-2938.Search in Google Scholar

60. Cocchiaro JL, Valdivia RH. (2009). New insight into Chlamydia intracellular survival mechanisms. Cell Microbiol. 11(11):1571-1578.Search in Google Scholar

61. Christian J, Vier J, Paschen SA, Hacker G. (2010). Cleavage of the NF-κB family protein p65/RelA by the chlamydial protease-like activity factor (CPAF) impairs proinflammatory signaling in cells infected with Chlamydiae. J Biol Chem. 285:41320-41327.Search in Google Scholar

62. Sun SC, Ley SC. (2008). New insights into NFkappaB regulation and function. Trends Immunol. 29:469-478.Search in Google Scholar

63. Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A, Krajewski S, Reed JC. (2008). ChlaDub1 of Chlamydia trachomatis suppresses NF-kB activation and inhibits IkBa ubiquitination and degradation. Cellular Microbiology. 10:1879-1892.Search in Google Scholar

64. Zhong G. (2011). Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol. 2:14.Search in Google Scholar

65. Chen AL, Johnson KA, Lee JK, Sutterlin C, Tan M. (2012). CPAF: A chlamydial protease in search of an authentic substrate. PLoS Pathog. 8: e1002842. Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other