1. bookVolume 23 (2015): Edizione 2 (June 2015)
Dettagli della rivista
License
Formato
Rivista
eISSN
2284-5623
Prima pubblicazione
08 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Factors influencing vitamin K antagonists therapy / Factori care influențează terapia cu antagoniști ai vitaminei K

Pubblicato online: 23 Jun 2015
Volume & Edizione: Volume 23 (2015) - Edizione 2 (June 2015)
Pagine: 159 - 167
Ricevuto: 10 Feb 2015
Accettato: 15 May 2015
Dettagli della rivista
License
Formato
Rivista
eISSN
2284-5623
Prima pubblicazione
08 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Vitamin K antagonists (VKAs) are widely used for the primary and secondary prevention of thromboembolism, their anticoagulant effect being monitored through INR. Achieving and maintaining a stable anticoagulation status is challenging, because of the narrow therapeutic range, and of the extremely variable individual response to therapy.

Environmental factors such as age, gender, body mass, diet, herbal supplements, drugs, pre-existing pathology, as well as genetic factors can substantially influence the anticoagulant effect of VKAs. The main genetic factors that contribute to individual variability in response to VKAs are genetic polymorphisms in genes influencing VKAs’ metabolism (CYP2C9) and pharmacodynamic response (VKOR1) and account for about one third in the variation of warfarin and analogues dose requirement. Systematic genotyping of patients requiring warfarin therapy is still a matter of debate.

Although novel oral anticoagulants (direct thrombin and factor Xa inhibitors) seem promising, VKAs are still frequently prescribed, therefore physicians should be aware of the various factors influencing VKAs’ effect, and educational programmes for doctors and patients should be conducted in that respect

Keywords

Cuvinte cheie

1. Paterson JM, Mamdani M, Juurlink DN, Naglie G, Laupacis A, Stukel TA. Clinical consequences of generic warfarin substitution: an ecological study. JAMA. 2006; 296:1969-72. DOI: 10.1001/jama.296.16.1969-b10.1001/jama.296.16.1969-b17062858Search in Google Scholar

2. Borobia AM, Lubomirov R, Ramírez E, Lorenzo A, Campos A, Mu-oz-Romo R, et al. An Acenocoumarol Dosing Algorithm Using Clinical and Pharmacogenetic Data in Spanish Patients with Thromboembolic Disease. PLoS One. 2012;7(7):e41360. DOI: 10.1371/ journal.pone.004136010.1371/journal.pone.0041360340117222911785Search in Google Scholar

3. Gadisseur APA, van der Meer FJM, Adriaansen HJ, Fihn SD, Rosendaal FR. Therapeutic quality control of oral anticoagulant therapy comparing the short-acting acenocoumarol and the long-acting phenprocoumon. Br J Haematol. 2002 Jun;117(4):940-6. DOI: 10.1046/j.1365-2141.2002.03493.x10.1046/j.1365-2141.2002.03493.x12060134Search in Google Scholar

4. Poller L. Interrnational Normalized Ratios (INR): the first 20 years. J Thromb Haemost. 2004;2:849-60. DOI: 10.1111/j.1538-7836.2004.00775.x10.1111/j.1538-7836.2004.00775.x15140114Search in Google Scholar

5. Biss TT, Avery PJ, Walsh PM, Kamali F. Comparison of ‚time within therapeutic INR range’ with ‚percentage INR within therapeutic range’ for assessing longterm anticoagulation control in children. J Thromb Haemost. 2011;9:1090-2. DOI: 10.1111/j.1538-7836.2011.04500.x10.1111/j.1538-7836.2011.04500.x21899719Search in Google Scholar

6. Gatt A, Van Veen JJ, Woolley AM, Kitchen S, Cooper P, Makris M. Thrombin generation assays are superior to traditional tests in assessing anticoagulation reversal in vitro. Thromb Haemost. 2008;100:350-5. DOI: 10.1160/th07-05-035710.1160/TH07-05-0357Search in Google Scholar

7. Gatt A, Riddel A, Van Veen JJ, Kitchen S, Tuddenham EG, Makris M. Optimizing warfarin reversal - an ex vivo study. J Thromb Haemost. 2009;7(7):1123-7. DOI: 10.1111/j.1538-7836.2009.03435.x10.1111/j.1538-7836.2009.03435.x19575759Search in Google Scholar

8. Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral Anticoagulant Therapy. Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2):e44S-e88S.10.1378/chest.11-2292327805122315269Search in Google Scholar

9. Kimmel SE, Chen Z, Price M, Parker CS, Metlay JP, Christie JD, Brensinger CM, Newcomb CW, Samaha FF, Gross R. The influence of patient adherence on anticoagulation control with warfarin: results from the International Normalized Ratio Adherence and Genetics (IN-RANGE) Study. Arch Intern Med. 2007;167(3):229-35. DOI: 10.1001/archinte.167.3.22910.1001/archinte.167.3.22917296877Search in Google Scholar

10. Orensky IA, Holdford DA. Predictors of noncompliance with warfarin therapy in an outpatient anticoagulation clinic. Pharmacotherapy. 2005;25(12):1801-8. DOI: 10.1592/phco.2005.25.12.180110.1592/phco.2005.25.12.180116305299Search in Google Scholar

11. Platt AB, Localio AR, Brensinger CM, Cruess DG, Christie JD, Gross R, et al. Risk factors for nonadherence to warfarin: results from the IN-RANGE study. Pharmacoepidemiol Drug Saf. 2008;17(9):853-60. DOI: 10.1002/pds.155610.1002/pds.1556Search in Google Scholar

12. Shepherd AM, Hewick DS, Moreland TA, Stevenson IH. Age as a determinant of sensitivity to warfarin. Br J Clin Pharmacol. 1977;4(3):315-20. DOI: 10.1111/ j.1365-2125.1977.tb00719.x10.1111/j.1365-2125.1977.tb00719.xSearch in Google Scholar

13. Gurwitz JH, Avorn J,Ross-Degnan D, Choodnovskiy I, Ansell J. Aging and the Anticoagulant Response to Warfarin Therapy. Ann Intern Med. 1992;116(11):901-4. DOI: 10.7326/0003-4819-116-11-90110.7326/0003-4819-116-11-901Search in Google Scholar

14. El-Helou N, Al-Hajje A, Ajrouche R, Awada S, Rachidi S, Zein S, et al. Adverse drug events associated with vitamin K antagonists: factors of therapeutic imbalance. Vasc Health Risk Manag. 2013;9:81-8.Search in Google Scholar

15. Martin JH. Pharmacogenetics of warfarin - is testing clinically indicated? Aust Prescr. 2009;32:76-80.Search in Google Scholar

16. Shibata Y, Hashimoto H, Kurata C, Ohno R, Kazui T, Takinami M. Influence of physical activity on warfarin therapy. Thromb Haemost. 1998; 80(1):203-4.Search in Google Scholar

17. Lenz TL, Lenz NJ, Faulkner MA. Potential interactions between exercise and drug therapy. Sports Med. 2004;34(5):293-306. DOI: 10.2165/00007256-200434050-0000210.2165/00007256-200434050-00002Search in Google Scholar

18. Weathermon R, Crabb DW. Alcohol and medication interactions. Alcohol Res Health. 1999;23(1):40-54.Search in Google Scholar

19. Booth SL, Suttie JW. Dietary Intake and Adequacy of Vitamin K. J Nutr. 1998;128(5):785-8.10.1093/jn/128.5.785Search in Google Scholar

20. Booth SL, Pennington JAT, Sadowski JA. Food sources and dietary intakes of vitamin K1 (phylloquinone) in the American diet: data from the FDA Total Diet Study. J Am Diet Assoc. 1996;96:149-54. DOI: 10.1016/ S0002-8223(96)00044-210.1016/S0002-8223(96)00044-2Search in Google Scholar

21. Price R, Fenton S, Shearer MJ, Bolton-Smith C. Daily and seasonal variation in phylloquinone (vitamin K1) intake in Scotland. Proc Nutr Soc. 1996;55:244.Search in Google Scholar

22. Rombouts EK, Rosendaal FR, Van Der Meer FJ. Daily vitamin K supplementation improves anticoagulant stability. J Thromb Haemost. 2007;5:2043-8. DOI: 10.1111/j.1538-7836.2007.02715.x10.1111/j.1538-7836.2007.02715.x17666020Search in Google Scholar

23. Sconce E, Avery P, Wynne H, Kamali F. Vitamin K supplementation can improve stability of anticoagulation for patients with unexplained variability in response to warfarin. Blood 2007; 109:2419-23. DOI: 10.1182/ blood-2006-09-04926210.1182/blood-2006-09-04926217110451Search in Google Scholar

24. de Assis MC, Rabelo ER, Ávila CW, Polanczyk CA, Rohde LE, Improved Oral Anticoagulation After a Dietary Vitamin K-Guided Strategy. A Randomized Controlled Trial. Circulation. 2009;120:1115-22. DOI: 10.1161/CIRCULATIONAHA.109.84920810.1161/CIRCULATIONAHA.109.84920819738137Search in Google Scholar

25. Beatty SJ, Mehta BH, Rodis JL. Decreased warfarin effect after initiation of high-protein, low-carbohydrate diets. Ann Pharmacother. 2005;39(4):744-7. DOI: 10.1345/aph.1E45410.1345/aph.1E45415755790Search in Google Scholar

26. Hornsby LB, Hester EK, Donaldson AR. Potential interaction between warfarin and high dietary protein intake. Pharmacotherapy. 2008;28(4):536-9. DOI: 10.1592/phco.28.4.53610.1592/phco.28.4.536Search in Google Scholar

27. Paoletti A, Gallo E, Benemei S, Vietri M, Alfredo Vannacci, et al. Interactions between Natural Health Products and Oral Anticoagulants: Spontaneous Reports in the Italian Surveillance System of Natural Health Products. Evidence-Based Complementary and Alternative Medicine 2011(2011), Article ID 612150, 5 pages.Search in Google Scholar

28. Olson RE. Vitamin K. In: Shils M, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Lippincott Williams & Wilkins. 1999:363-80.Search in Google Scholar

29. Traber MG. Vitamin E and K interactions-a 50-yearold problem. Nutr Rev. 2008;66(11):624-9. DOI: 10.1111/j.1753-4887.2008.00123.x10.1111/j.1753-4887.2008.00123.xSearch in Google Scholar

30. Knudsen JF, Sokol GH. Potential glucosamine-warfarin interaction resulting in increased international normalized ratio: case report and review of the literature and MedWatch database. Pharmacotherapy. 2010;30(1):110.Search in Google Scholar

31. Wittkowsky AK, Boccuzzi SJ, Wogen J, Wygant G, Patel P, Hauch O. Frequency of Concurrent Use of Warfarin with Potentially Interacting Drugs. Pharmacotherapy 2004;24:1668-74. DOI: 10.1592/ phco.24.17.1668.5233810.1592/phco.24.17.1668.52338Search in Google Scholar

32. Gebauer MG, Nyfort-Hansen K, Henschke PJ, Gallus AS. Warfarin and acetaminophen interaction. Pharmacotherapy 2003;23(1):109-12. DOI: 10.1592/ phco.23.1.109.3191310.1592/phco.23.1.109.31913Search in Google Scholar

33. Mammen EF. Coagulation abnormalities in liver disease. Hematol Oncol Clin North Am. 1992;6(6):1247-57.10.1016/S0889-8588(18)30273-9Search in Google Scholar

34. Sawicka-Powierza J, Rogowska-Szadkowska D, Ołtarzewska AM, Chlabicz S. Factors influencing activity of oral anticoagulants. Interactions with drugs and food. Pol Merkur Lekarski. 2008;24(143):458-62.Search in Google Scholar

35. Rettie A, Tai G. Pharmacogenomics of warfarin metabolism. Molecular Interventions. 2006;6(4):223-7. DOI: 10.1124/mi.6.4.810.1124/mi.6.4.8Search in Google Scholar

36. Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics. 2001;11(9):803-8. DOI: 10.1097/00008571-200112000-0000810.1097/00008571-200112000-00008Search in Google Scholar

37. Maekawa K, Fukushima-Uesaka H, Tohkin M, Hasegawa R, Kajio H, Kuzuya N, et al. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics. 2006;16(7):497-514. DOI: 10.1097/01. fpc.0000215069.14095.c610.1097/01Search in Google Scholar

38. Muszkat M, Blotnik S, Elami A, Krasilnikov I, Caraco Y. Warfarin metabolism and anticoagulant effect: a prospective, observational study of the impact of CYP2C9 genetic polymorphism in the presence of drug-disease and drug-drug interactions. Clin Ther. 2007;29(3):427-37. DOI: 10.1016/S0149-2918(07)80081-610.1016/S0149-2918(07)80081-6Search in Google Scholar

39. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation of warfarin dose. N Engl J Med. 2005;352:2285-93. DOI: 10.1056/NEJMoa04450310.1056/NEJMoa04450315930419Search in Google Scholar

40. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K, Pelz HJ, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004 Feb 5;427(6974):537-41. DOI: 10.1038/nature0221410.1038/nature0221414765194Search in Google Scholar

41. D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticogulant effect of warfarin. Blood. 2005 Jan 15;105(2):645-9. DOI: 10.1182/ blood-2004-06-211110.1182/blood-2004-06-211115358623Search in Google Scholar

42. Sinxadi P, Blockman M. Warfarin resistance. Cardiovasc J Afr. 2008;19(4):215-7.Search in Google Scholar

43. Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yale SH, et al. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res. 2007;5:8-16. DOI: 10.3121/cmr.2007.72410.3121/cmr.2007.724185534017456829Search in Google Scholar

44. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106:2329-33. DOI: 10.1182/ blood-2005-03-110810.1182/blood-2005-03-110815947090Search in Google Scholar

45. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011 Oct;90(4):625-9. DOI: 10.1038/ clpt.2011.18510.1038/clpt.2011.185318755021900891Search in Google Scholar

46. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A Randomized Trial of Genotype-Guided Dosing of Warfarin. N Engl J Med. 2013;369:2294-303. DOI: 10.1056/NEJMoa131138610.1056/NEJMoa131138624251363Search in Google Scholar

47. Stergiopoulos K, Brown DL. Genotype-Guided vs Clinical Dosing of Warfarin and Its Analogues Meta- analysis of Randomized Clinical Trials. JAMA Intern Med. 2014;174(8):1330-8. DOI: 10.1001/jamainternmed. 2014.2368Search in Google Scholar

48. Bauer KA. Pros and cons of new oral anticoagulants. ASH Education Book. 2013;2013(1):464-70. DOI: 10.1182/asheducation-2013.1.464 10.1182/asheducation-2013.1.46424319220Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo