Accesso libero

Comparative assessment of bone regeneration by histometry and a histological scoring system / Evaluarea comparativă a regenerării osoase utilizând histometria și un scor de vindecare histologică

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52:443-51. DOI: 10.1146/annurev.med.52.1.44310.1146/annurev.med.52.1.443Search in Google Scholar

2. Vats A, Tolley NS, Polak JM, Gough JE. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol. 2003;28(3):165-72. DOI: 10.1046/j.1365-2273.2003.00686.x10.1046/j.1365-2273.2003.00686.xSearch in Google Scholar

3. Burg Kjl, Porter S, Kellam J. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347-59. DOI: 10.1016/S0142-9612(00)00102-210.1016/S0142-9612(00)00102-2Search in Google Scholar

4. Shastri P. Future of Regenerative Medicine: Challenges and Hurdles. Artificial Organs. 2006;30(10):828-34. DOI: 10.1111/j.1525-1594.2006.00307.x10.1111/j.1525-1594.2006.00307.x17026584Search in Google Scholar

5. Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S. Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One. 2011;6(10):e26211. doi:10.1371/journal.pone.0026211 DOI: 10.1371/journal.pone.002621110.1371/journal.pone.0026211319217622022571Search in Google Scholar

6. Firoozabadi R, Morsher S, Engelke K, Prevrhal S, Fierlinger A, Miclau T 3rd, Genant HK. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies-focus on wrist fracture.Search in Google Scholar

J Orthopaed Trauma. 2008;22(8):83-90. DOI: 10.1097/ BOT.0b013e31815ea2a4Search in Google Scholar

7. Blockhuis TJ, de Bruine JH, Bramer JA, den Boer FC, Bakker FC, Patka P, Haarman HJ, Manoliu RA. The reliability of plain radiography in experimental fracture healing. Skeletal Radiol. 2001:30(3):151-6. DOI: 10.1007/s00256000031710.1007/s00256000031711357453Search in Google Scholar

8. Panjabi MM, Lindsey RW, Walter SD, White AA. The clinician’s ability to evaluate the strength of healing fractures from plain radiographs. J Orthop Trauma. 1989;3(1):29-32. DOI: 10.1097/00005131-198903010-0000610.1097/00005131-198903010-000062709201Search in Google Scholar

9. Warwick R, Willatt JM, Singhal B, Borremans J, Meagher T. Comparison of computed tomographic and magnetic resonance imaging in fracture healing after spinal injury. Spinal Cord. 2009;47(12):874-7. DOI: 10.1038/sc.2009.5910.1038/sc.2009.5919528996Search in Google Scholar

10. Kropil P, Hakimi AR, Jungbluth P, Riegger C, Rubbert C, Miese F, Lanzman RS, Wild M, Schek A, Scherer A, Windolf J, Antoch G, Becker J, Hakimi M. Cone Beam CT in assessment of tibial bone defect healing: An animal study. Acad Radiol. 2012;19(3):320-5. DOI: 10.1016/j.acra.2011.10.02210.1016/j.acra.2011.10.02222173320Search in Google Scholar

11. Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol. 2009;38(5):262-73. DOI: 10.1259/dmfr/8188995510.1259/dmfr/8188995519474253Search in Google Scholar

12. Lucaciu Ondine, Soritau Olga, Baciut G, Lucaciu D, Baciut M, Campian R, Bran S. The Role of Bone Morphogenetic Proteins in Tissue Engineering Particulate Bone Grafts. Particul Sci Technol. 2014:32(4):377-383. DOI: 10.1080/02726351.2013.87946210.1080/02726351.2013.879462Search in Google Scholar

13. Lucaciu O, Baciut M, Baciut M, Gheban D, Bran S, Hedesiu M, et al. Bone Regeneration in Craniofacial Reconstruction with Particulate Grafts obtained through Tissue Engineering. Particul Sci Technol. 2009:27(6):479-518. DOI: 10.1080/0272635090332854810.1080/02726350903328548Search in Google Scholar

14. Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, Caplan AI. Hyaluronan- based polymers in the treatment of osteochondral defects. J Orthop Res. 2000;18(5):773-80. DOI: 10.1002/jor.110018051510.1002/jor.110018051511117300Search in Google Scholar

15. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487-92. DOI: 10.1038/nature0238810.1038/nature0238815057821Search in Google Scholar

16. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in Tissue Engineering. Nat Biotechnol. 2005;23(1):47-55. DOI: 10.1038/nbt105510.1038/nbt105515637621Search in Google Scholar

17. Baciut M, Baciut G, Simion V. Investigation of deer antler as a potential bone regenerating biomaterial. J Optoel Adv Mat. 2007;9(8):2547-50. DOI: 10.1016/j. ijom.2007.08.373Search in Google Scholar

18. Rekow D. Informatics Challenges in Tissue Engineering and Biomaterials. Adv Dent Res. 2003;17(1):49-54. DOI: 10.1177/15440737030170011210.1177/15440737030170011215126207Search in Google Scholar

19. Haasper C, Ziechen J, Meister R, Krettek Ch. Tissue engineering of osteochondral constructs in vitro using bioreactors. Int J of the Care of the Injured. 2008;39(1):66-76. DOI: 10.1016/j.injury.2008.01.03710.1016/j.injury.2008.01.03718313474Search in Google Scholar

20. Indrawattana N, Chen G, Tadokoro M. Growth factor combination chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004;320(3):914-9. DOI: 10.1016/j.bbrc.2004.06.02910.1016/j.bbrc.2004.06.02915240135Search in Google Scholar

21. Wozney JM. Overview of bone morphogenetic proteins. Spine, 2002;27(16):S2-8. DOI: 10.1097/00007632-200208151-0000210.1097/00007632-200208151-0000212205411Search in Google Scholar

22. Ebara S, Nakayama K. Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine. 2002;27(16):S10-5. DOI: 10.1097/00007632-200208151-0000410.1097/00007632-200208151-0000412205413Search in Google Scholar

23. Lucaciu O, Baciut M, Baciut G, Campian R, Soritau O, Bran S, et al. Tissue engineered bone versus alloplastic commercial biomaterials in craniofacial reconstruction. Rom J Morphol Embryol. 2010;51(1):129-36.Search in Google Scholar

24. Yang Z, Sui L, Toh WS, Lee EH, Cao T. Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev. 2009;18(6):929-40. DOI: 10.1089/scd.2008.021910.1089/scd.2008.021918855519Search in Google Scholar

25. Kuske B, Savkovic V, zur Nieden NI. Improved media compositions for the differentiation of embryonic stem cells into osteoblasts and chondrocytes. Methods Mol Biol. 2011;690:195-215. DOI: 10.1007/978-1-60761-962-8_1410.1007/978-1-60761-962-8_1421042995Search in Google Scholar

26. Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103(5):389-98. DOI: 10.1263/jbb.103.38910.1263/jbb.103.38917609152Search in Google Scholar

27. Gothard D, Roberts SJ, Shakesheff KM, Buttery LD. Engineering embryonic stem-cell aggregation allows an enhanced osteogenic differentiation in vitro. Tissue Eng Part C Methods. 2010;16(4):583-95. DOI: 10.1089/ten.tec.2009.046210.1089/ten.tec.2009.046219751101Search in Google Scholar

28. Schimming R, Schmelzeisen R. Tissue Engineered Bone for Maxillary Sinus Augmentation. J Oral Maxillofac Surg. 2004;62(6):724-9. DOI: 10.1016/j. joms.2004.01.009Search in Google Scholar

29. Tawonsawatruk T, Hamilton DF, Simpson AH. Validation of the use of radiographic fracture-healing scores in a small animal model. J Orthoped Res. 2014;32(9):1117-9. DOI: 10.1002/jor.2266510.1002/jor.2266524895294Search in Google Scholar

30. de Mello E, Oliveira R, Pelegrine AA, Aloise AC, Ferreira LM. Xenograft impregnated with bone marrow mononuclear fraction for appositional bone regeneration in rabbit calvaria: a clinical and histomorphometric study. Int J Oral Maxillofac Implants. 2014;29(4):962-8. DOI: 10.11607/jomi.346210.11607/jomi.346225032778Search in Google Scholar

31. Liu Y, Möller B, Wiltfang J, Warnke PH, Terheyden H. Tissue engineering of a vascularized bone graft of critical size with an osteogenic and angiogenic factor-based in vivo bioreactor. Tissue Eng Part A. 2014; [Epub 2014 Jun 11]. DOI: 10.1089/ten.tea.2013.0653Search in Google Scholar

32. Chakar C, Naaman N, Soffer E, Cohen N, El Osta N, Petite H, Anagnostou F. Bone formation with deproteinized bovine bone mineral or biphasic calcium phosphate in the presence of autologous platelet lysate: comparative investigation in rabbit. Int J Biomater. 2014;2014:ID367265 doi: 10.1155/2014/367265.[ Epub 2014 May 27]. DOI: 10.1155/2014/36726510.1155/2014/367265405849324982676Search in Google Scholar

33. Semenoff TA, Semenoff-Segundo A, Bosco AF, Nagata MJ, Garcia VG, Biasoli ER. Histometric analysis of ligature- induced periodontitis in rats: a comparison of histological section planes. J Appl Oral Sci. 2008;16(4):251-6. DOI: 10.1590/S1678-7757200800040000510.1590/S1678-77572008000400005Search in Google Scholar

34. Hermann JS, Schoolfield JD, Nummikoski PV, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements. Int J Oral Maxillofac Implants. 2001;16(4):475-85.Search in Google Scholar

35. Park YS, Kim S, Oh SH, Park HJ, Lee S, Kim TI, Lee YK, Heo MS. Comparison of alveolar ridge preservation methods using three-dimensional micro-computed tomographic analysis and two-dimensional histometric evaluation. Imaging Sci Dent. 2014;44(2):143-8. DOI: 10.5624/isd.2014.44.2.143 10.5624/isd.2014.44.2.143406129824944964Search in Google Scholar

eISSN:
2284-5623
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology