Accesso libero

The Influence of Gear Micropump Body Asymmetry On Stress Distribution

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Biernacki K., Stryczek S., PL Patent Application No. 123143, 06.06.2014Search in Google Scholar

2. Casoli P., Vacca A., Berta G.L., Optimization of relevant design parameters of external gear pumps, 7th International Symposium on Fluid Power, Toyama 2008.10.5739/isfp.2008.277Search in Google Scholar

3. Casoli P., Vacca A., Franzoni G., A numerical model for the simulation of external gear pumps, 6th JFPS International Symposium on Fluid Power, Tsukuba, 2005.10.5739/isfp.2005.705Search in Google Scholar

4. Dhar S., Vacca A., A novel CFD - Axial motion coupled model for the axial balance of lateral bushings in external gear machines, Simulation Modelling Practice and Theory, 2012, 67, pp 60-76.10.1016/j.simpat.2012.03.008Search in Google Scholar

5. Ghionea I., Ghionea A., Constantin G., CAD - CAE methodology applied to analysis of a gear pump, Proceedings in Manufacturing Systems, 2013, vol.8, issue 1.Search in Google Scholar

6. Kollek W., Pompy zębate - Konstrukcja i eksploatacja, Ossolineum, Wrocław 1996.Search in Google Scholar

7. Kollek W., Osiński P., Modelling and design of gear pumps, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2009.Search in Google Scholar

8. Kollek W., Radziwanowska U., Energetic efficiency of gear micropumps, Archives of Civil and Mechanical Engineering, 2015, Vol. 15, Issue 1, pp 109-115.10.1016/j.acme.2014.05.005Search in Google Scholar

9. Li H., Yang Ch., Zhou P., The finite element analysis and optimizations of shells of internal gear pumps based on Ansys, Fluid Power and Mechatronics ,2011, pp 185-190.10.1109/FPM.2011.6045754Search in Google Scholar

10. Lipski J., Napęd i Sterowanie Hydrauliczne, Wydawnictwa Komunikacji i Łączności 1981.Search in Google Scholar

11. Łączkowski R., Wibroakustyka Maszyn i Urządzeń, Wydawnictwo Naukowo-Techniczne, 1983.Search in Google Scholar

12. Mucchi E., Dalpiaz G., Experimental Validation of a Model for the Dynamic Analysis of Gear Pumps, ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5: 25th International Conference on Design Theory and Methodology; ASME 2013 Power Transmission and Gearing Conference, Portland, Oregon, USA, August 4-7, 2013.Search in Google Scholar

13. Mucchi E., Dalpiaz G., Fernandez del Rincon A., Elastodynamic analysis of a gear pump. Part I: Pressure distribution and gear eccentricity, Mechanical Systems and Signal Processing, 2010, 24, p. 2160-2179.10.1016/j.ymssp.2010.02.003Search in Google Scholar

14. Mucchi E., Rivola A., Dalpiaz G., Modelling dynamic behaviour and noise generation in gear pumps: Procedure and validation, Applied Acoustics, 2014, 77, pp 99-111.10.1016/j.apacoust.2013.10.007Search in Google Scholar

15. Osiński P., Deptuła A., Partyka M. A., Discrete optimization of a gear pump after tooth root undercutting by means of multi-valued logic trees, Archives of Civil and Mechanical Engineering, 2013, vol. 13, No. 4, pp 422-431, http://dx.doi.org/10.1016/j.acme.2013.05.00110.1016/j.acme.2013.05.001Search in Google Scholar

16. Osiński P., Kollek W., Assessment of energetistic measuring techniques and their application to diagnosis of acoustic condition of hydraulic machinery and equipment, Archives of Civil and Mechanical Engineering, 2013, vol. 13, nr 3, pp 313-321, http://dx.doi.org/10.1016/j.acme.2013.03.00110.1016/j.acme.2013.03.001Search in Google Scholar

17. Osiński P., Modelling and design of gear pumps with modified tooth profile, LAP Lambert Academic Publishing. Saarbrucken 2014.Search in Google Scholar

18. Osiński P., Wysokociśnieniowe i niskopulsacyjne pompy zębate o zazębieniu zewnętrznym, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2013.Search in Google Scholar

19. Ragunathan C., Manoharan C., Dynamic analysis of hydrodynamic gear pump performance using design of experiment stand operational parameters, IOSR Journal of Mechanical and Civil Engineering, 2012, vol. 1, issue 6, pp 17-23.10.9790/1684-0161723Search in Google Scholar

20. Singal R.K., Singal M., Singal R., Hydraulic Machines. Fluid Machinery, I.K. International Publishing House, New Delhi, 2009.Search in Google Scholar

21. Śliwiński P., Flow of liquid in flat gaps of the satellite motor working mechanism, Polish Maritime Research 2(82) 2014 Vol 21, pp 50-57.10.2478/pomr-2014-0019Search in Google Scholar

22. Śliwiński P., The basics of design and experimental tests of the commutation unit of a hydraulic satellite motor, Archives of Civil and Mechanical Engineering, 2016, vol. 16, issue 4, pp 634-644, doi:10.1016/j.acme.2016.04.003.Search in Google Scholar

23. Stryczek S., Napęd Hydrostatyczny, Wydawnictwo Naukowo-Techniczne, Warszawa 2005.Search in Google Scholar

24. Vacca A., Guidetti M., Modelling and experimental validation of external spur gear machines for fluid power applications, Simulation Modelling Practice and Theory, 2011, 19, pp 2007-2031.10.1016/j.simpat.2011.05.009Search in Google Scholar

25. Wang S., Sakurai H., Kasarekar A., The optimal design in external gear pumps and motors, ASME Transactions on Mechatronics, 2011, vol. 16, no. 5.10.1109/TMECH.2010.2058860Search in Google Scholar

26. http://www.kxcad.net/ansys/ANSYS/ansyshelp/Hlp_E_SOLID187.htmlSearch in Google Scholar

eISSN:
2083-7429
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences