Accesso libero

Simulation of SOFCs based power generation system using Aspen

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Facci, A.L., Cigolotti, V., Jannelli, E. & Ubertini, S. (2017). Technical and economic assessment of a SOFC based energy system for combined cooling, heating and power. Appl. Energy, 192, 563–574. DOI: 10.1016/j.apenergy.2016.06.105.10.1016/j.apenergy.2016.06.105Open DOISearch in Google Scholar

2. Zhang, W., Croiset, E., Douglas, P.L., Fowler, M.W. & Entchev, E. (2005). Simulation of tubular solid oxide fuel cell stack using AspenPlusTM unit operation models, Energy Conv. Managem. 46. 181–196. DOI: 10.1016/j.enconman.2004.03.002.10.1016/j.enconman.2004.03.002Open DOISearch in Google Scholar

3. Ameri, M. & Mohammadi, R. (2013). Simulation of an atmospheric SOFC and gas turbine hybrid system using Aspen Plus software. Inter. J. Energy Res. 37, 412–425. DOI: 10.1002/er.1941.10.1002/er.1941Open DOISearch in Google Scholar

4. Anderson, T., Vijay, P. & Tade, M.O. (2014). An adaptable steady state Aspen Hysys model for the methane fuelled solid oxide fuel cell. Chem. Enginee. Res. Design. 92, 295–307. DOI: 10.1016/j.cherd.2013.07.025.10.1016/j.cherd.2013.07.025Open DOISearch in Google Scholar

5. Galvagno, A., Prestipino, M., Zafarana, G. & Chiodo, V. (2016). Analysis of an integrated agro-waste gasification and 120 kw SOFC CHP system: modeling and experimental investigation. Energia Proc. 101, 528–535. DOI: 10.1016/j.egypro.2016.11.067.10.1016/j.egypro.2016.11.067Open DOISearch in Google Scholar

6. Doherty, W., Reynolds, A. & Kennedy, D. (2010). Computer simulation of biomass gasification – Solid Oxide Fuel Cell power system using ASPEN Plus. Energy, 35, 4545–4555. DOI: 10.1016/j.energy.2010.04.051.10.1016/j.energy.2010.04.051Open DOISearch in Google Scholar

7. Song, T.W., Sohn, J.L., Kim, J.H., Kim, T.S., Ro, S.T., Suzuki, K. (2005). Performance analysis of a tubular solid Oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model. J. Power Sourc. 142, 30–42. DOI: 10.1016/j.jpowsour.2004.10.011.10.1016/j.jpowsour.2004.10.011Open DOISearch in Google Scholar

8. Achenbach, E. (1994). Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. J. Power Sour. 49, 333–348. DOI: 10.1016/0378-7753(93)01833-4.10.1016/0378-7753(93)01833-4Search in Google Scholar

9. Chan, S.H., Khor, K.A. & Xia, Z.T. (2001). A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sour. 93, 130–140. DOI: S0378-7753(00)00556-5.10.1016/S0378-7753(00)00556-5Search in Google Scholar

10. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien, M. (2015). Analysis of a micro-CHP unit with in-series SOFC stack fed by biogas. Energia Proc. 75, 2021–2026. DOI: 10.1016/j.egypro.2015.07.265.10.1016/j.egypro.2015.07.265Search in Google Scholar

11. Barelli, L., Bidini, G., Gallorini, F. & Ottaviano, A. (2001). An energetic-exergetic comparison between PEMFC and SOFC based micro-CHP systems. Inter. J. Hydrogen Energy, 36, 2011, 3206–3214. DOI: 10.1016/j/ijhydene.2010.11.079.10.1016/j/ijhydene.2010.11.079Open DOISearch in Google Scholar

12. Campanari, S. (2001). Thermodynamic model and parametric analysis of a tubular SOFC module. J. Power Sour. 92, 1–2, 26–34. DOI: S0378-7753(00)00494-8.10.1016/S0378-7753(00)00494-8Search in Google Scholar

13. EG & G. Services, Parsons Inc., Science Applications International Corporation, Fuel Cell Handbook, National Technical Information Service, U. S. Department of Commerce: Springfield, V A, 2004.Search in Google Scholar

14. Akkaya, V.A. (2007). Electrochemical model for performance analysis of a tubular SOFC. Int. J. Energy Res. 31, 1, 79–98, DOI: 10.1002/er.1238.10.1002/er.1238Open DOISearch in Google Scholar

15. Timothy, A., Periasamy, V. & Moses, T. (2014). An adaptable steady state Aspen Hysys model for the methane fuelled solid oxide fuel cell. Chem. Enginee. Res. Des. 92, 295–307. DOI: 10.1016/j.cherd.2013.07.025.10.1016/j.cherd.2013.07.025Open DOISearch in Google Scholar

16. Kakac, S., Pramuanjaroenkij, A. & Zhou, X.Y. (2007). A review of numerical modeling of solid Oxide fuel cells. Inter. J. Hydrogen Energy, 32, 761–786, 2007. DOI: 10.1016/j.ijhydene.2006.11.028.10.1016/j.ijhydene.2006.11.028Open DOISearch in Google Scholar

17. Majewski, A.J. & Dhir, A. Silver as a current collector for SOFC, 12th European SOFC & SOE Forum, ISBN 978-3-905592-21-4, 5–8 July 2016, Lucerna, Switzerland.Search in Google Scholar

18. Minutillo, M., Perna, A. & Jannelli, E.(2014). SOFC and MCFC system level modelling for hybrid plants performance prediction, Inter. J. Hydrogen Energy. 39, 21688–21699. DOI: 10.1016/j.ijhydeme.2014.09.082.10.1016/j.ijhydeme.2014.09.082Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering