Accesso libero

Enhancement photocatalytic activity of spinel oxide (Co, Ni)3O4 by combination with carbon nanotubes

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Hussein, F.H., Halbus, A.F., Lafta, A.J. & Athab, Z.H. (2015). Preparation and Characterization of Activated Carbon from Iraqi Khestawy Date Palm. J. Chem. 1–8. http://dx.doi.org/10.1155/2015/295748.10.1155/2015/295748Open DOISearch in Google Scholar

2. Falah, H.H., Ahmed, F.H., Hussein, Hassan, A.K. & WIisam, Hussein, A.K. (2010). Photocatalytic Degradation of Bismarck Brown G Using Irradiated ZnO in Aqueous Solutions. E-J. Chem. 7(2), 540–544. http://www.e-journals.net.10.1155/2010/719674Search in Google Scholar

3. Garg, V.K., Amita, M., Kumar, R. & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: a timber industry waste. Dyes Pigm. 63(3), 243–250. http://dx.doi.org/10.1016/j.dyepig.2004.03.005.10.1016/j.dyepig.2004.03.005Open DOISearch in Google Scholar

4. Hussein, F.H. (2013). Chemical Properties of Treated Textile Dyeing Wastewater. Asian J. Chem. 25(16), 9393–9400. DOI: 10.14233/ajchem.2013.15909A.10.14233/ajchem.2013.15909Open DOISearch in Google Scholar

5. Garg, V.K., Amita, M., Kumar, R. & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: a timber industry waste. Dyes Pigments. 63(3), 243–250. http://dx.doi.org/10.1016/j.dyepig.2004.03.005.10.1016/j.dyepig.2004.03.005Open DOISearch in Google Scholar

6. Abbas, J.A., Salih, H.K. & Falah, H.H. (2008). Photocatalytic degradation of textile Dyeing wastewater using titanium dioxide and zinc oxide. E-J. Chem. 5(2), 219–223. http://www.e-journals.net.10.1155/2008/876498Search in Google Scholar

7. Robinson, T., McMullan, G., Marchant, R. & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores. Technol. 77(3), 247–255. DOI: 10.1016/S0960-8524(00)00080-8.10.1016/S0960-8524(00)00080-8Open DOISearch in Google Scholar

8. Zamora, P., Kunz, A., Moraes, S., Pelegrini, R., Molerio, P., Reyes, J. & Duran, N. (1999). Chemosphere. Degradation of Reactive Dyes I. A Comparative Study of Ozonation, Enzymatic and Photochemical Processes. Chemosphere 38(4), 835–852. DOI: 10.1016/S0045-6535(98)00227-6.10.1016/S0045-6535(98)00227-6Search in Google Scholar

9. Ladakowicz, L., Solecka, M. & Zylla, R. (2001). Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes, J. Biotech. 89(2–3), 175–184. DOI: 10.1016/S0168-1656(01)00296-6.10.1016/S0168-1656(01)00296-6Open DOISearch in Google Scholar

10. Georgiou, D., Melidis, P., Aivasidis, A. & Gimouhopoulos, K. (2002). Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigm. 52, 69–78. DOI: 10.1016/S0143-7208(01)00078-X.10.1016/S0143-7208(01)00078-XSearch in Google Scholar

11. Farrauto, R. & Bartholomew, C. (1997). Fundamentals of Industrial Catalytic Processes, Chapman & Hall, Kluwer Academic Publishers, London.Search in Google Scholar

12. Pourbaix, M. (1974). Atlas of Electrochemical Equilibrium, Pergamum Press, New York, Translated from French by J.A. Franklin, USA.Search in Google Scholar

13. Pal, J. & Chauhan, P. (2010). Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater. Character. 61(5), 575–579. DOI: 10.1016/j.matchar.2010.02.017.10.1016/j.matchar.2010.02.017Search in Google Scholar

14. Sujia, T.T., Hamagamia, T., Kawamurab, T., Yamakia, J. & Masaharu, T. (2005). Laser ablation of cobalt and cobalt oxides in liquids: influence of solvent on composition of prepared nanoparticles. Japan Appl. Surf. Sci. 243(30), 214–219. DOI: 10.1016/j.apsusc.2004.09.065.10.1016/j.apsusc.2004.09.065Open DOISearch in Google Scholar

15. Alkaim, A.F., Sadik, Z., Mahdi, D.K., Alshrefi, S.M., Al-Sammarraie, A.M., Alamgir, F.M., Singh, P.M. & Aljeboree, A.M. (2015). Preparation, structure and adsorption properties of synthesized multiwall carbon nanotubes for highly effective removal of maxilon blue dye. Korean J. Chem. Eng. 32(12), 2456–2462. DOI: 10.1007/s11814-015-0078-y.10.1007/s11814-015-0078-yOpen DOISearch in Google Scholar

16. Aljebori, A.M. & Alshirifi, A.N. (2012). Effect of Different Parameters on the Adsorption of Textile Dye Maxilon Blue GRL from Aqueous Solution by Using White Marble. Asian J. Chem. 24, 5813–5816. www.asianjournalofchemistry.co.in.Search in Google Scholar

17. Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X. & Zou, Z. (2007). Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B: Environmental 69(3–4), 138–144. http://dx.doi.org/10.1016/j.apcatb.2006.06.015.10.1016/j.apcatb.2006.06.015Open DOISearch in Google Scholar

18. Yang, Z., Du, G., Meng, Q., Guo, Z., Yu, X., Chen, Z., Guo, T. & Zeng, R. (2012). Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem. 22, 5848–5854. DOI: 10.1039/c2jm14852h.10.1039/c2jm14852hOpen DOISearch in Google Scholar

19. He, H.Y., Fei, J. & Lu, J. (2015). High photocatalytic and photo-Fenton-like activities of ZnO-reduced graphene oxide nanocomposites in the degradation of malachite green in water. Micro and Nano Lett. 10(8), 389–394. DOI: 10.1049/mnl.2014.0551.10.1049/mnl.2014.0551Search in Google Scholar

20. Shen, J., Yan, B., Shi, M. & Mingxin, Y. (2011). One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21(10), 3415–3421. DOI: 10.1039/C0JM03542D.10.1039/c0jm03542dSearch in Google Scholar

21. Abdulrazzak, F.H. (2016). Enhance photocatalytic Activity of TiO2 by Carbon Nanotubes. Inter. J. Chem. Tech. Res. 9(3), 431–443. www.sphinxsai.comSearch in Google Scholar

22. Salam, M.A., El-Shishtawy & Obaid, R.M.A.Y. (2014). Synthesis of magnetic multi-walled carbon nanotubes/magnetite/chitin magnetic nanocomposite for the removal of Rose Bengal from real and model solution. J. Ind. Enginee. Chem. 20(5), 3559–3567. DOI: 10.1016/j.jiec.2013.12.049.10.1016/j.jiec.2013.12.049Open DOISearch in Google Scholar

23. Gupta, V.K., Agarwal, S. & Saleh, T.A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185(1), 17–23. DOI:10.1016/j.jhazmat.2010.08.053.10.1016/j.jhazmat.2010.08.05320888691Open DOISearch in Google Scholar

24. Dervishi, E., Watanabe, F., Xu, Y., Saini, V., Biris, A.R. & Biris, A.S. (2009). Thermally controlled synthesis of single-wall carbon nanotubes with selective diameters. J. Mat. Chem. 19(19), 3004–3012. DOI: 10.1039/b822469b.10.1039/b822469bOpen DOISearch in Google Scholar

25. Yao, Y., Li, G., Ciston, S., Lueptow, R.M. & Gray, K.A. (2008). Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity. Environ. Sci. Technol. 42(13), 4952–4957. DOI: 10.1021/es800191n.10.1021/es800191n18678032Open DOISearch in Google Scholar

26. Manafi, S., Nadali, H. & Irani, H.R. (2008). Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater. Lett. 62(26), 4175–4176. http://dx.doi.org/10.1016/j.matlet.2008.05.072.10.1016/j.matlet.2008.05.072Open DOISearch in Google Scholar

27. Sun, Z., Zhang, X., Liu, Z., Han, B. & An, G. (2006). Synthesis of ZrO2-Carbon Nanotube Composites and Their Application as Chemiluminescent Sensor Material for Ethanol. J. Phys. Chem. B. 110(27), 13410–13414. DOI: 10.1021/jp0616359.10.1021/jp061635916821863Open DOISearch in Google Scholar

28. Hussein, F.H., Obies, M.H. & Abed, A.A. (2010). Photocatalytic Decolorization of Bismarck Brown R by Suspension of Titanium Dioxide. Int. J. Chem. Sci. 8(4), 2736–2746. https://www.researchgate.net/publication/299595106.Search in Google Scholar

29. Opalińska, A., Malka, I., Dzwolak, W., Chudobe, T., Presz, A., Lojkowski, W. & Ron, N. (2015). Size-dependent density of zirconia nanoparticles. Beil. J. Nanotech. 2015; 6: 27–35. DOI: 10.3762/bjnano.6.4.10.3762/bjnano.6.4431161425671149Open DOISearch in Google Scholar

30. Zhenyu, S., Xinrong, Z., Zhimin, L., Buxing, H. & Guimin, A. (2006). Synthesis of ZrO2–Carbon Nanotube Composites and Their Application as Chemiluminescent Sensor Material for Ethanol. J. Phys. Chem. B 110(27), 13410–13414. DOI: 10.1021/jp0616359.10.1021/jp0616359Open DOISearch in Google Scholar

31. Karam, F.F., Kadhim, M.I. & Alkaim, A.F. (2015). Optimal conditions for synthesis of 1, 4-naphthaquinone by photocatalytic oxidation of naphthalene in closed system reactor, Int. J. Chem. Sci. 13, 650–660. www.sadgurupublications.com.Search in Google Scholar

32. Alkaim, A.F., Dillert, R. & Bahnemann, D.W. (2015). Effect of polar and movable (OH or NH2 groups) on the photocatalytic H2 production of alkyl-alkanolamine: a comparative study. Environ. Technol. 36(17), 2190–2197. DOI: 10.1080/09593330.2015.1024757.10.1080/09593330.2015.102475725729880Open DOISearch in Google Scholar

33. Šíma, J. & Hasal, P. (2013). Photocatalytic Degradation of Textile Dyes in aTiO2/UV System. Chem. Enginee. Trans. 32, 80–84. DOI: 10.3303/CET1332014.10.3303/CET1332014Open DOISearch in Google Scholar

34. Kandiel, T.A., Robben, L., Alkaim, A. & Bahnemann, D. (2013). Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 12(4), 602–609. DOI: 10.1039/c2pp25217a.10.1039/c2pp25217a22945758Open DOISearch in Google Scholar

35. Zhen, L., Shan, C., & Yiming, X. (2014). Brookite vs Anatase TiO2 in the Photocatalytic Activity for Organic Degradation in Water. ACS Catal. 4(9), 3273–3280. DOI: 10.1021/cs500785z.10.1021/cs500785zOpen DOISearch in Google Scholar

36. Mohammad, E.J., Lafta, A.J., & Kahdim, S.H. (2016). Photocatalytic removal of reactive yellow 145 dye from simulated textile wastewaters over supported (Co, Ni)3O4/Al2O3 co-catalyst. Pol. J. Chem. Technol 18(3), 1–8. DOI: 10.15P1o5l/.pjJc.t-C2h0e1m6-.00T4ec1h.10.1515/pjct-2016-0041Search in Google Scholar

37. Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R. & Fairbrother, D.H. (2011). Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon. 49(1), 24–36. DOI: 10.1016/j.carbon.2010.08.034.10.1016/j.carbon.2010.08.034Open DOISearch in Google Scholar

38. Wang, W., Serp, P., Kalck, P. & Faria, J.L. (2005). Visible light Photodegradation of Phenol on MWNT-TiO2 Composite Catalysts Prepared by a Modified Sol-gel Method. J. Molec. Catal. A. Chem. 235(1), 194–199. DOI: 10.1016/j.molcata.2005.02.027.10.1016/j.molcata.2005.02.027Open DOISearch in Google Scholar

39. Wepasnick, K.A., Smith, B.A. & Fairbrother, D.H. (2011). Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1), 24–36. DOI: 10.1016/j.carbon.2010.08.034.10.1016/j.carbon.2010.08.034Open DOISearch in Google Scholar

40. Akhavan, O., Azimirad, R., Safa, S. & Larijani, M. (2010). Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents. J. Mater. Chem. 20(35), 7386–7392. DOI: 10.1039/C0JM00543F.10.1039/000543Open DOISearch in Google Scholar

41. Sanchai, K. & Hang, H. (2011). Study of NiO-CoO and Co3O4-Ni3O4 Solid Solutions in Multiphase Ni-Co-O Systems. Ind. Enginee. Chem. Res. 50(4), 2015–2020. DOI: dx.doi.org/10.1021/ie101249r.10.1021/ie101249rOpen DOISearch in Google Scholar

42. Xie, Y.,. Heo, S., Yoo, H., Ali, G. & Cho, S. (2010). Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes. Nanoscale Res. Lett. 5, 603–607. DOI: 10.1007/s11671-009-9513-5.10.1007/s11671-009-9513-5289370620671780Open DOISearch in Google Scholar

43. Liu, G., Yan, X., Chen, Z., Wang, X., Wang, L., Lu, G. & Cheng, H. (2009). Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. J. Mater. Chem. 19, 6590–6596. DOI: 10.1039/B902666E.10.1039/B902666Open DOISearch in Google Scholar

44. Matos, J., Laine, J. & Herrmann, J.M. (1998). Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl. Catal. B: Environmental, 18, 281–291. DOI: 10.1007/s11356-014-2832-9.10.1007/s11356-014-2832-924788930Open DOISearch in Google Scholar

45. Slimen, H., Lachheb, H., Qourzal, S., Assabbane, A. & Houas, A. (2015). The effect of calcination atmosphere on the structure and photoactivity of TiO2 synthesized through an unconventional dopingusing activated carbon. J. Environ. Chem. Enginee. 3(2), 922–929. DOI: 10.1016/j.jece.2015.02.017.10.1016/j.jece.2015.02.017Open DOISearch in Google Scholar

46. Chen, W., Fan, Z., Zhang, B., Ma, G., Takanabe, K., Zhang, X. & Lai, Z. (2011). Enhanced visible-light activity of titania via confinement inside carbon nanotubes. J. Am. Chem. Soc. 133(38), 14896–14899. DOI: 10.1021/ja205997x.10.1021/ja205997x21894970Open DOISearch in Google Scholar

47. Vajda, K., Mogyorosi, K., Nemeth, Z., Hernadi, K., Forro, L., Magrez, A. & Dombi, A. (2011). Photocatalytic activity of TiO2/SWCNT and TiO2/MWCNT nano composites with different carbon nanotube content. Phys. Stat. Sol. B. 248(11), 2496–2499. DOI: 10.1002/pssb.201100117.10.1002/pssb.201100117Open DOISearch in Google Scholar

48. Naseri, M.G., Saion, E.B., Ahangard, H.A., Hashim, M. & Shaari, A.H. (2011). Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 212(1), 80–88. DOI: 10.1016/j.powtec.2011.04.033.10.1016/j.powtec.2011.04.033Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering