Accesso libero

Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Kucińska-Lipka, J., Gubanska, I. & Janik, H. (2015). Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospective. Polym. Bull. 72(9), 2399–2419. DOI: 10.1007/s00289-015-1407-3.10.1007/s00289-015-1407-3Search in Google Scholar

2. Ross, P., Mayer, R. & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55(1), 35–58.10.1128/mr.55.1.35-58.19913728002030672Search in Google Scholar

3. Koizumi, S., Tomita, Y., Kondo, T. & Hashimoto, T. (2009). What factors determine hierarchical structure of microbial cellulose - interplay among physics, chemistry and biology. Macromol. Symp. 279(1), 110–118. DOI: 10.1002/masy.200950517.10.1002/masy.200950517Search in Google Scholar

4. Lei, L., Li, S. & Gu, Y. (2012). Cellulose synthase complexes: composition and regulation. Front. Plant Sci. 3, 75. DOI: 10.3389/fpls.2012.00075.10.3389/fpls.2012.00075335562922639663Search in Google Scholar

5. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H. & Benziman M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281. DOI: 10.1038/325279a0.10.1038/325279a018990795Search in Google Scholar

6. Yoshinaga, F., Tonouchi, N. & Watanabe, K. (1997). Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotechnol. Biochem. 61(2), 219–224. DOI: 10.1271/bbb.61.219.10.1271/bbb.61.219Search in Google Scholar

7. Li, Y., Tian, C., Tian, H., Zhang, J., He, X., Ping, W. & Lei, H. (2012). Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl. Microbiol. Biotechnol. 96(6), 1479–1487. DOI: 10.1007/s00253-012-4242-6.10.1007/s00253-012-4242-622782249Search in Google Scholar

8. Ragunathan, S. & Levy, H.R. (1994). Purification and characterization of the NAD-preferring glucose-6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum). Arch. Biochem. Biophys. 310(2), 360–366. DOI: 10.1006/abbi.1994.1179.10.1006/abbi.1994.11798179320Search in Google Scholar

9. Yang, X.Y., Huang, C., Guo, H.J., Xiong, L., Luo, J., Wang, B., Chen, X.F., Lin, X.Q. & Chen, X.D. (2014). Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J. Microbiol. 54(3), 268–273. DOI: 10.1007/s12088-014-0450-3.10.1007/s12088-014-0450-3403972524891733Search in Google Scholar

10. Czaja, W., Romanovicz, D. & Brown, R.M. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3), 403–411. DOI: 10.1023/B:CELL.0000046412.11983.61.10.1023/B:CELL.0000046412.11983.61Search in Google Scholar

11. Hornung, M., Ludwig, M. & Schmauder, H.P. (2007). Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng. Life. Sci. 7(1), 35–41. DOI: 10.1002/elsc.200620164.10.1002/elsc.200620164Search in Google Scholar

12. Lin, D., Lopez-Sanchez, P., Li, R. & Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Biores. Technol. 151, 113–119. DOI: 10.1016/j.biortech.2013.10.052.10.1016/j.biortech.2013.10.05224212131Search in Google Scholar

13. Mormino, R. & Bungay, H. (2003). Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl. Microbiol. Biotechnol. 62(5–6), 503–506. DOI: 10.1007/s00253-003-1377-5.10.1007/s00253-003-1377-512827324Search in Google Scholar

14. Fijałkowski, K., Żywicka, A., Drozd, R., Niemczyk, A., Junka, A.F., Peitler, D., Kordas, M., Konopacki, M., Szymczyk, P., El-Fray, M. & Rakoczy, R. (2015). Modification of bacterial cellulose through exposure to the rotating magnetic field. Carboh. Polym. 133, 52–60. DOI: 10.1016/j.carbpol.2015.07.011.10.1016/j.carbpol.2015.07.01126344254Search in Google Scholar

15. Velizarov, S. (1999). Electric and magnetic fields in microbial biotechnology: possibilities, limitations and perspectives. Electro. Magnetobiol. 18(2), 185–212. DOI: 10.3109/15368379909012912.10.3109/15368379909012912Search in Google Scholar

16. Filipič, J., Kraigher, B., Tepuš, B., Kokol, V. & Mandic-Mulec, I. (2012). Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Biores. Technol. 120, 225–232. DOI: 10.1016/j.biortech.2012.06.023.10.1016/j.biortech.2012.06.02322820111Search in Google Scholar

17. Fojt, L., Strasak, L., Vetterl, V. & Smarda, J. (2004). Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63(1–2), 337–341. DOI: 10.1016/j.bioelechem.2003.11.010.10.1016/j.bioelechem.2003.11.01015110299Search in Google Scholar

18. Strašák, L., Vetterl, V. & Fojt, L. (2005). Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagn. Biol. Med. 24(3), 293–300. DOI: 10.1080/15368370500379715.10.1080/15368370500379715Search in Google Scholar

19. Hristov, J. & Perez, V.H. (2011). Critical analysis of data concerning Saccharomyces cerevisiae free-cell proliferations and fermentations assisted by magnetic and electromagnetic fields. Int. Rev. Chem. Eng. 3(1), 3–20.Search in Google Scholar

20. Fijałkowski, K., Nawrotek, P., Struk, M., Kordas, M. & Rakoczy, R. (2015). Effects of rotating magnetic field exposure on the functional parameters of different species of bacteria. Electromagn. Biol. Med. 34(1), 48–55. DOI: 10.3109/15368378.2013.869754.10.3109/15368378.2013.86975424460420Search in Google Scholar

21. Fijałkowski, K., Nawrotek, P., Struk, M., Kordas, M. & Rakoczy, R. (2013). The effect of rotating magnetic field on growth rate, cell metabolic activity and biofilm formation by S. aureus and E. coli. J. Magn. 18(3), 289–296. DOI: 10.4283/JMAG.2013.18.3.289.10.4283/JMAG.2013.18.3.289Search in Google Scholar

22. Lee, K.Y., Buldum, G., Mantalaris, A. & Bismarck, A. (2014). More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol. Biosci. 14(1), 10–32. DOI: 10.1002/mabi.201300298.10.1002/mabi.201300298Search in Google Scholar

23. Toyosaki, H., Naritomi, T., Seto, A. & Yoshinaga, F. (1995). Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci. Biotech. Biochem. 59(8), 1498–1502. DOI: 10.1271/bbb.59.1498.10.1271/bbb.59.1498Search in Google Scholar

24. Park, J.K., Hyun, S.H. & Jung, J.Y. (2004). Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioproc. Eng. 9(5), 383–388. DOI: 10.1007/BF02933062.10.1007/BF02933062Search in Google Scholar

25. Yoshino, T., Asakura, T. & Toda, K. (1996). Cellulose production by Acetobacter pasteurianus on silicon membrane. J. Ferment. Bioeng. 81(1), 32–36. DOI: 10.1016/0922-338X(96)83116-3.10.1016/0922-338X(96)83116-3Search in Google Scholar

26. Serafica, G., Mormino, R. & Bungay, H. (2002). Inclusion of solid particle in bacterial cellulose. Appl. Microbiol. Biot. 58(6), 756–760. DOI: 10.1007/s00253-002-0978-8.10.1007/s00253-002-0978-8Search in Google Scholar

27. Morrow, A.C., Dunstan, R.H., King, B.V. & Roberts, T.K. (2007). Metabolic effects of static magnetic fields on Streptococcus pyogenes. Bioelectromagnetics 28(6), 439–445. DOI: 10.1002/bem.20332.10.1002/bem.20332Search in Google Scholar

28. Toda, K., Asakura, T., Fukaya, M., Entani, E. & Kawamura, Y. (1997). Cellulose production by acetic acid-resistant Acetobacter xylinum. Ferment. Bioeng. 84(3), 228–231. DOI: 10.1016/S0922-338X(97)82059-4.10.1016/S0922-338X(97)82059-4Search in Google Scholar

29. Rakoczy, R. (2010). Enhancement of solid dissolution process under the influence of rotating magnetic field. Chem. Eng. Process. 49(1), 42–50. DOI: 10.1016/j.cep.2009.11.004.10.1016/j.cep.2009.11.004Search in Google Scholar

30. Fraňa, K., Stiller, J. & Grundmann, R. (2006). Transitional and turbulent flows driven by a rotating magnetic field. Magnetohydrodynamics 42(2–3), 187–197.Search in Google Scholar

31. Walker, J.S. (1999). Models of melt motion, heat transfer and mass transport during crystal growth with strong magnetic field. Prog. Cryst. Growth Ch. 38(1), 195. DOI: 10.1016/S0960-8974(99)00012-1.10.1016/S0960-8974(99)00012-1Search in Google Scholar

32. Rakoczy, R. & Masiuk, S. (2010). Influence of transverse rotating magnetic field on enhancement of solid dissolution process. J. AIChE 56(6), 1416–1433. DOI: 10.1002/aic.12097.10.1002/aic.12097Search in Google Scholar

33. Moffatt, H.K. (1991). Electromagnetic stirring. Phys. Fluids A 3(5), 1336–1343.10.1063/1.858062Search in Google Scholar

34. Anton-Leberre, V., Haanappel, E., Marsaud, N., Aka, H., Haddour, N. & Krähenbühl, L. (2010). Exposure to high static of pulsed magnetic fields: does not affect cellular processes in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 31(1), 28–38. DOI: 10.1002/bem.20523.10.1002/bem.2052319603479Search in Google Scholar

35. Gaafar, E.S.A., Hanafy, M.S., Tohamy, E.Y. & Ibahim, M.H. (2008). The effect of electromagnetic field on protein molecular structure of E. coli and its pathogenesis. Rom. J. Biophys. 18(2), 145–169.Search in Google Scholar

36. Zhang, Z., Yang, Z., Zhu, B., Hu, J., Liew, C.W., Zhang, Y., Leopold, J.A., Handy, D.E., Loscalzo, J. & Stanton, R.C. (2012). Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose. PLoS One 7(11). DOI: 10.1371/journal.pone.0049128.10.1371/journal.pone.0049128350149723185302Search in Google Scholar

37. Gao, W., Liu, Y., Zhou, J. & Pan, H. (2005). Effects of a strong static magnetic field on bacterium Shewanella oneidensis: an assessment by using whole genome microarray. Bioelectromagnetics 26(7), 558–563. DOI: 10.1002/bem.20133.10.1002/bem.2013316037957Search in Google Scholar

38. Segatore, B., Setacci, D., Bennato, F., Cardigno, R., Amicosante, G. & Iorio, R. (2012). Evaluations of the effects of extremely low-frequency electromagnetic fields on growth and antibiotic susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int. J. Micro. 7. DOI: 10.1155/2012/587293.10.1155/2012/587293333518522577384Search in Google Scholar

39. Rolfe, M.D., Rice, C.J., Lucchini, S., Pin, C., Thompson, A., Cameron, A.D., Alston, M., Stringer, M.F., Betts, R.P., Baranyi, J., Peck, M.W. & Hinton, J.C. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 194(3), 686–701. DOI: 10.1128/JB.06112-11.10.1128/JB.06112-11326407722139505Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering