INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Turkiewicz, A. (2005). Doctoral dissertation - Some problems of degradation water-dispersion polymer drilling fluids (in Polish). AGH im. Stanisława Staszica w Krakowie.Search in Google Scholar

2. Romero-Bastida, C.A., Bello-Perez, L.A., Garcia, M.A., Martino, M.N., Solorza-Feria, J. & Zaritzky, N.E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatization from non-conventional sources of starches. Carbohyd. Polym., 60, 235–244. DOI: 10.1016/j.carbpol.2005.01.004.10.1016/j.carbpol.2005.01.004Search in Google Scholar

3. Sindhu, M., Brahmakumar, M. & Emilia Abgraham, T. (2006). Microstructural imaging and characterization of the mechanical, chemical, thermal and swelling properties of starch-chitosan blend films. Biopolym 82, 176–187. DOI: 10.1002/bip.20480.10.1002/bip.2048016489584Search in Google Scholar

4. Kittipongpatana, I.S., Chaichanasak, N., Kanchongkittipoan, S., Panturat, A., Taekanmark, T. & Kittpongpatana, N. (2006). An aqueous film-coating formulation based on sodium carboxymethyl mungbean starch. Starch 58, 587–589. DOI: 10.1002/star.200600528.10.1002/star.200600528Search in Google Scholar

5. Silva, D.A., de Paula, R.C.M., Feitosa, J.P.A., de Brito, A.C.F., Maciel, J.S., Paula, H.C.B. (2004). Carboxymethylation of cashew tree exudate polysaccharide. Carbohydr. Polym. 58, 163–171. DOI: 10.1016/j.carbpol.2004.06.034.10.1016/j.carbpol.2004.06.034Search in Google Scholar

6. Assaad, E. & Mateescu, M.A. (2010). The influence of protonation ratio on properties of carboxymethyl starch excipient at various substitution degrees: Structural insights and drug release kinetics. Inter. J. Pharm. 394, 75–84. DOI: 10.1016/j.ijpharm.2010.04.037.10.1016/j.ijpharm.2010.04.03720435114Search in Google Scholar

7. Spychaj T., Wilpiszewska K., Zdanowicz M. (2013). Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch 65, 22–33. DOI: 10.1002/star.201200159.10.1002/star.201200159Search in Google Scholar

8. Malinowska-Pańczyk, E., Sztuka, K. & Kołodziejska, I. (2010). Antimicrobial materials as components of the film based on biodegradable natural polimer (in Polish). Polimery 55, 627–633.10.14314/polimery.2010.627Search in Google Scholar

9. Talja, R.A., Helen, H., Roos, Y.H. & Jouppila, K. (2007). Efect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 67, 288–295. DOI: 10.1016/j.carbpol.2006.05.019.10.1016/j.carbpol.2006.05.019Search in Google Scholar

10. Wilpiszewska, K., Antosik, A.K. & Spychaj, T. (2015). Novel hydrophilic carboxymethyl starch/montmorylonite nanocomposite films. Carbohydr. Polym., 128, 82–89. DOI: 10.1016/j.carbpol.2015.04.023.10.1016/j.carbpol.2015.04.02326005142Search in Google Scholar

11. Almasi, H., Ghanbarzadeh, B., Entezami, A.A. (2010). Physicochemical properties of starch-CMC-nanoclay biodegradable films. Inter. J. Bio. Macro. 46, 1–5. DOI:10.1016/j.ijbiomac.2009.10.001.10.1016/j.ijbiomac.2009.10.00119828115Search in Google Scholar

12. Kalemba, D. (1998). Antibacterial and antifungal properties of essential oils (in Polish). Post. Mikrobiol. 38, 165–184.Search in Google Scholar

13. Chen, W., Liu, Y., Li, M., Mao, J., Zhang, L., Huang, R., Jin, X. & Ye, L. (2015). Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharm. Sci. 127(3), 332–338. DOI: 10.1016/j.jphs.2015.01.00810.1016/j.jphs.2015.01.008Search in Google Scholar

14. Swift, K.A.D. (2004). Catalytic Transformations of the Major Terpene Feedstocks. Top. Cat. 27, 143–155. DOI: 10.1023/B:TOCA.0000013549.60930.da.10.1023/B:TOCA.0000013549.60930.daSearch in Google Scholar

15. Thomas, A.F. (1989). Limonene. Nat. Prod. Rep. 3, 291–309. DOI: 10.1039/NP9890600291.10.1039/NP9890600291Search in Google Scholar

16. Wang, C.Y., Bai, X.Y. & Wang, C.H. (2014). Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. Am. J. Chin. Med. 42, 543–559. DOI: 10.1142/S0192415X14500359.10.1142/S0192415X14500359Search in Google Scholar

17. Márcio, R.V., Santos Flávia, V. & Moreira B.P. (2011). Cardiovascular effects of monoterpenes: a review. Rev. Bras. Farmacogn. 21, 764–771. DOI: 10.1590/S0102-695X2011005000119.10.1590/S0102-695X2011005000119Search in Google Scholar

18. Suryawanshi, J.A.S. (2011). An overview of Citrus aurantium used in treatment of various diseases. Afr. J. Plant Sci. 5, 390–395.Search in Google Scholar

19. Iversena, M., Finstada, B., McKinleyc, R.S. & Eliassenb, R.A. 2003. The efficacy of metomidate, clove oil, Aqui-™ and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquacult. 221, 549–566. DOI: 10.1016/S0044-8486(03)00111-X.10.1016/S0044-8486(03)00111-XSearch in Google Scholar

20. Bhowmik, D., Kumar, K.P.S. & Yadav, A. (2012). Recent Trends in Indian Traditional Herbs Syzygium Aromaticum and its Health Benefits. J. Pharm. Phytochem. 1(1), 13–22.Search in Google Scholar

21. Różański, H. (2016), Akademia Medyczna im. K. Marcinkowskiego, Zakład Historii Nauk Medycznych, Poznań: Essential oils as an alternative to antibiotic growth promoters and coccidiostats (in Polish). luskiewnik.strefa.pl. [2016-04-15].Search in Google Scholar

22. Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. (2008). Biological effects of essential oils – A review. Food Chem. Toxic. 46, 446–475. DOI: 10.1016/j.fct.2007.09.106.10.1016/j.fct.2007.09.10617996351Search in Google Scholar

23. Chaieb, K., Hajlaoui, H., Zmantar, T. & Kahla-Nakbi, A.B. (2007). The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother. Res. 21, 501–506. DOI: 10.1002/ptr.2124.10.1002/ptr.212417380552Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering