Accesso libero

Cobalt-lanthanum catalyst precursors for ammonia synthesis: determination of calcination temperature and storage conditions

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Jacobsen, C.J.H. (2000). Novel class of ammonia synthesis catalysts. Chem. Commun. 12, 1057–1058. DOI: 10.1039/B002930K.10.1039/b002930kSearch in Google Scholar

2. Moszyński, D., Jędrzejewski, R., Ziebro, J. & Arabczyk, W. (2010). Surface and catalytic properties of potassium-modified cobalt molybdenum catalysts for ammonia synthesis. Appl. Surf. Sci. 256(17), 5581–5584. DOI: 10.1016/j.apsusc.2009.12.150.10.1016/j.apsusc.2009.12.150Search in Google Scholar

3. Hagen, S., Barfod, R., Fehrmann, R., Jacobsen, C.J.H., Teunissen, H.T. & Chorkendorf, I. (2003). Ammonia synthesis with barium-promoted iron-cobalt alloys supported on carbon. J. Catal. 214(2), 327–335. DOI: 10.1016/S0021-9517(02)00182-3.10.1016/S0021-9517(02)00182-3Search in Google Scholar

4. Raróg-Pilecka, W., Miśkiewicz, E., Matyszek, M., Kaszkur, Z., Kępiński, L. & Kowalczyk, Z. (2006). Carbon-supported cobalt catalyst for ammonia synthesis: Effect of preparation procedure. J. Catal. 237(1), 207–210. DOI: 10.1016/j.jcat.2005.10.029.10.1016/j.jcat.2005.10.029Search in Google Scholar

5. Tarka, A., Zybert, M., Truszkiewicz, E., Mierzwa, B., Kępiński, L., Moszyński, D. & Raróg-Pilecka, W. (2015). Effect of a barium promoter on the stability and activity of carbon-supported cobalt catalysts for ammonia synthesis. ChemCatChem 7(18), 2836–2839. DOI: 10.1002/cctc.201500309.10.1002/cctc.201500309Search in Google Scholar

6. Karolewska, M., Truszkiewicz, E., Iwanek, E., Mierzwa, B. & Raróg-Pilecka, W. (2011). Cobalt catalysts doped with cerium and barium obtained by co-precipitation method for ammonia synthesis process. Catal. Lett. 141(5), 678–684. DOI: 10.1007/s10562-011-0564-8.10.1007/s10562-011-0564-8Search in Google Scholar

7. Karolewska, M., Truszkiewicz, E., Mierzwa, B., Kępiński, L. & Raróg-Pilecka, W. (2012). Ammonia synthesis over cobalt catalysts doped with cerium and barium. Effect of the ceria loading. Appl. Catal. A: General 445–446, 280–286. DOI: 10.1016/j.apcata.2012.08.028.10.1016/j.apcata.2012.08.028Search in Google Scholar

8. Zybert, M., Karasińska, M., Truszkiewicz, E., Mierzwa, B. & Raróg-Pilecka, W. (2015). Properties and activity of the cobalt catalysts for NH3 synthesis obtained by co-precipitation – the effect of lanthanum addition. Pol. J. Chem. Technol. 17(1), 138–143. DOI: 10.1515/pjct-2015-0020.10.1515/pjct-2015-0020Search in Google Scholar

9. Zybert, M., Tarka, A., Mierzwa, B., Kępiński, L. & Raróg-Pilecka, W. (2016). Promotion effect of lanthanum on the Co/La/Ba ammonia synthesis catalysts – the influence of lanthanum content. Appl. Catal. A: General 515, 16–24. DOI: 10.1016/j.apcata.2016.01.036.10.1016/j.apcata.2016.01.036Search in Google Scholar

10. Klingenberg, B. & Vannice, M.A. (1996). Influence of pretreatment on lanthanum nitrate, carbonate and oxide powders. Chem. Mater. 8(12), 2755–2768. DOI: 10.1021/cm9602555.10.1021/cm9602555Search in Google Scholar

11. Wang, X., Wang, M., Song, H. & Ding, B. (2006). A simple sol-gel technique for preparing lanthanum oxide nanopowders. Mater. Lett. 60(17–18), 2261–2265. DOI: 10.1016/j.matlet.2005.12.142.10.1016/j.matlet.2005.12.142Search in Google Scholar

12. Wendlandt, W.W. (1956). The thermolysis of the rare earth and other metal nitrates. Anal. Chim. Acta 15, 435–439. DOI: 10.1016/0003-2670(56)80082-2.10.1016/0003-2670(56)80082-2Search in Google Scholar

13. Patil, K.C., Gosavi, R.K. & Rao, C.N.R. (1967). Infrared spectra and thermal decomposition of metal nitrites and nitrates. Inorg. Chim. Acta 1, 155–160. DOI: 10.1016/S0020-1693(00)93160-8.10.1016/S0020-1693(00)93160-8Search in Google Scholar

14. Shirsat, A.N., Ali, M., Kaimal, K.N.G., Bharadwaj, S.R. & Das, D. (2003). Thermochemistry of La2O2CO3 decomposition. Thermochim. Acta 399(1–2), 167–170. DOI: 10.1016/S0040-6031(02)00459-8.10.1016/S0040-6031(02)00459-8Search in Google Scholar

15. Turcotte, R.P., Sawyer, J.O. & Eyring, L. (1969). Rare earth dioxymonocarbonates and their decomposition. Inorg. Chem. 8(2), 238–246. DOI: 10.1021/ic50072a012.10.1021/ic50072a012Search in Google Scholar

16. Walter, D. (2006). Kinetic Analysis of the transformation from lanthanum hydroxide to lanthanum oxide. Z. Anorg. Allg. Chem. 632(12–13), 2165. DOI: 10.1002/zaac.200670177.10.1002/zaac.200670177Search in Google Scholar

17. Füglein, E. & Walter, D. (2012). Thermal analysis of lanthanum hydroxide. J. Therm. Anal. Calorim. 110(1), 199–202. DOI: 10.1007/s10973-012-2298-2.10.1007/s10973-012-2298-2Search in Google Scholar

18. Dollimore, D. (1981). The use of thermal analysis in studying catalysts and the chemisorption process. Thermochim. Acta 50(1–3), 123–146. DOI: 10.1016/0040-6031(81)85050-2.10.1016/0040-6031(81)85050-2Search in Google Scholar

19. Janssen, F. (1986). The use of thermal analysis techniques in heterogeneous catalysts. Thermochim. Acta 148, 137–147. DOI: 10.1016/0040-6031(89)85210-4.10.1016/0040-6031(89)85210-4Search in Google Scholar

20. Leofanti, G., Tazzola, G., Padovan, M., Petrini, G., Bordiga, S. & Zecchina, A. (1997). Catalyst characterization: applications. Catal. Today 34(3–4), 329–352. DOI: 10.1016/S0920-5861(97)86089-0.10.1016/S0920-5861(97)86089-0Search in Google Scholar

21. Auroux, A. (1994). Thermal methods: calorimetry, differential thermal analysis and thermogravimetry. In B. Imelik & J.C. Vedrine (Eds.), Catal. Character. Phys. Techniq. Solid Mater. (pp. 611–650). New York, Springer Science + Business Media.10.1007/978-1-4757-9589-9_22Search in Google Scholar

22. Zybert, M., Truszkiewicz, E., Mierzwa, B. & Raróg-Pilecka, W. (2014). Thermal analysis coupled with mass spectrometry as a tool to determine the cobalt content in cobalt catalyst precursors obtained by co-precipitation. Thermochim. Acta 584, 31–35. DOI: 10.1016/j.tca.2014.03.026.10.1016/j.tca.2014.03.026Search in Google Scholar

23. Lendzion-Bieluń. Z., Jędrzejewski, R. & Arabczyk, W. (2011). The effect of aluminum oxide on the reduction of cobalt oxide and thermostability of cobalt and cobalt oxide. Cent. Eur. J. Chem. 9(5), 834–839. DOI: 10.2478/s11532-011-0059-x.10.2478/s11532-011-0059-xSearch in Google Scholar

24. El-Shobaky, G.A., Ahmad, A.S., Al-Noaimi, A.N. & El-Shobaky, H.G. (1996). Thermal decomposition of basic cobalt and copper carbonates. J. Therm. Anal. 46(6), 1801–1808. DOI: 10.1007/BF01980784.10.1007/BF01980784Search in Google Scholar

25. El-Shobaky, G.A., Hewaidy, I.F. & El-Nabarawy, T. (1980). A study of the influence of thermal treatment of the catalyst on the catalytic oxidation of CO on Co3O4. Surf. Technol. 10(4), 311–319. DOI: 10.1016/0376-4583(80)90088-6.10.1016/0376-4583(80)90088-6Search in Google Scholar

26. Mentus, S., Jelić, D. & Grudić, V. (2007). Lanthanum nitrate decomposition by both temperature programmed heating and citrate gel combustion. J. Therm. Anal. Calorim. 90(2), 393–397. DOI: 10.1007/s10973-006-7603-5.10.1007/s10973-006-7603-5Search in Google Scholar

27. Karolewska, M., Wójcik, P., Truszkiewicz, E., Narowski, R. & Raróg-Pilecka, W. (2012). Co-precipitation as an effective method for preparation of cobalt catalysts for ammonia synthesis. Przem. Chem. 91(11), 2142–2145 [in Polish].Search in Google Scholar

28. Zybert, M. (2015). Preparation, properties and activity of the promoted cobalt catalysts for ammonia synthesis. Doctoral dissertation, Warsaw University of Technology, Warsaw [in Polish].Search in Google Scholar

29. Neumann, A. & Walter, D. (2006). The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Thermochim. Acta 445(2), 200–204. DOI: 10.1016/j.tca.2005.06.013.10.1016/j.tca.2005.06.013Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering