Accesso libero

Utilization of spent dregs for the production of activated carbon for CO2 adsorption

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Working Group and Contribution to the IPCC Fifth Assessment Report (2013). Climate Change 2013: The Physical Science Basis, Final Draft Underlying Scientific-Technical Assessment, Chapter 2: Observations: Atmosphere and Surface – Final Draft Underlying Scientific-Technical Assessment, Stockholm, Sweden.Search in Google Scholar

2. Siemiątkowski, G. (2013). Emisja antropogenicznych gazów cieplarnianych i ich wpływ na efekt cieplarniany. Sci. Works Inst. Ceram. Buil. Mater. 15, 81–90.Search in Google Scholar

3. Figueroa, D.J., Fout, T., Plasynski, S., McLlvried, H. & Srivastava, D.R. (2008). Advance in CO2 capture technology- The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Control 2, 9–20. DOI: 10.1016/S1750-5836(07)00094-1.10.1016/S1750-5836(07)00094-1Search in Google Scholar

4. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, B.R., Bland, E.A. & Wright, I. (2008). Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. (China), 20, 14–27. DOI: 10.1016/S1001-0742(08)60002-9.10.1016/S1001-0742(08)60002-9Search in Google Scholar

5. Sevilla, M. & Fuertes, A.B. (2011). Sustainable porous carbons with a superior performance for CO2 capture. Ener. & Environ. Sci. 4(5), 1765–1771. DOI: 10.1039/C0EE00784F10.1039/c0ee00784fSearch in Google Scholar

6. Vargas, D.P., Giraldo, L. & Moreno-Piraján, J.C. (2013). Study of CO2 adsorption in functionalized carbon. Adsorption 19(2–4), 323–329. DOI: 10.1007/s10450-012-9454-7.10.1007/s10450-012-9454-7Search in Google Scholar

7. Djeridi, W., Ouederni, A., Mansour, N.B., Llewellyn, P.L., Alyamani, A. & El, M. (2016). Effect of the both texture and electrical properties of activated carbon on the CO2 adsorption capacity. Mater. Res. Bull. 73, 130–139. DOI: 10.1016/j.materresbull.2015.08.03210.1016/j.materresbull.2015.08.032Search in Google Scholar

8. Olkuski, T. (2015). Wpływ handlu uprawnieniami do emisji CO2 w Unii Europejskiej na przeciwdziałanie zmianom klimatu. Pol. Energ. 18, 87–97.Search in Google Scholar

9. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data, 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.10.1021/acs.jced.5b00294Search in Google Scholar

10. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R., Gesikiewicz-Puchalska, A. & Michalkiewicz, B. (2015). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A. 129, 394–401. DOI: 10.12693/APhysPolA.129.394.10.12693/APhysPolA.129.394Search in Google Scholar

11. Gesikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.10.1016/j.cej.2016.10.005Search in Google Scholar

12. Mlodzik, J., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents. Acta Phys. Pol. A, 129, 402–404. DOI: 10.12693/APhysPolA.129.402.10.12693/APhysPolA.129.402Search in Google Scholar

13. Srenscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol. J. Chem. Technol. 13, 63–70. DOI: 10.2478/v10026-011-0051-4.10.2478/v10026-011-0051-4Search in Google Scholar

14. Glonek, K., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. &Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A. 129, 158–161. DOI: 10.12693/APhysPolA.129.158.10.12693/APhysPolA.129.158Search in Google Scholar

15. Gong, Jiang, Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. Acs Sustain. Chem. & Engine. 2, 2837–2844. DOI: 10.1021/sc500603h.10.1021/sc500603hSearch in Google Scholar

16. Araki, S., Kiyohara, Y., Tanaka, S. & Miyake, Y. (2012). Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. J. Coll. Inter. Sci. 388, 185–190. DOI: 10.1016/j.jcis.2012.06.061.10.1016/j.jcis.2012.06.06123022273Search in Google Scholar

17. Akhtar, F., Liu, Q.L., Hedinab, N. & Bergstrom, L. (2012). Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy Environ. Sci. 5, 7664–7676. DOI: 10.1039/C2EE21153J.10.1039/c2ee21153jSearch in Google Scholar

18. Palomino, M., Corma A., J., Jorda, L., Rey, F. & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem. Commun. 48, 215–217. DOI: 10.1039/c1cc16320e.10.1039/C1CC16320ESearch in Google Scholar

19. Zhang, J., Sun, L., Xu, F., Li, F., Zhou, H.Y., Huang, F.L., Gabelica, Z. & Schick, C. (2012). Hydrogen storage and selective carbon dioxide capture in a new chromium(III)-based infinite coordination polymer. Rsc. Adv. 2(7), 2939–2945. DOI: 10.1039/C2RA01188C.10.1039/c2ra01188cSearch in Google Scholar

20. Li, B., Zhang, Z., Li, Y., Yao, K., Zhu, Y., Deng, Z., Yang, F., Zhou, X., Li, G., Wu, H., Nijem, N., Chabal, Y.J., Lai, Z., Han, Y., Shi, Z., Feng, S., Li, J. & Angew K. (2012). Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metalorganic framework. Chem., Int. Ed. 51, 1412–1415. DOI:10.1002/anie.201105966.10.1002/anie.20110596622213672Search in Google Scholar

21. Debatin, F., Mollmer, J., Mondal, S.S., Behrens, K., Möller, A., Staudt, R., Thomas, A. & Holdt, H.J. (2012). White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+. J. Mater. Chem. 22, 4623–4631. DOI: 10.1039/c4tc02919d.10.1039/C4TC02919DSearch in Google Scholar

22. Chen, Q., Luo, M., Hammershøj, P., Zhou, D., Han, Y., Laursen, B.W., Yan, C.G., Han, B.H. (2012). Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation. J. Am. Chem. Soc. 134, 6084–6087. DOI: 10.1021/ja300438w.10.1021/ja300438w22455734Search in Google Scholar

23. Luo, Y., Li, B., Wang, W., Wu, K. & Tan, B. (2012). Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials. Adv. Mater. 24, 5703–5707. DOI: 10.1002/adma.201202447.10.1002/adma.20120244723008146Search in Google Scholar

24. Pei C., Ben, T., Cui, Y. & Qiu, S. (2012). Storage of hydrogen, methane, carbon dioxide in electron-rich porous aromatic framework (JUC-Z2). Adsorption 18, 375–380. DOI: 10.1007/s10450-012-9416-0.10.1007/s10450-012-9416-0Search in Google Scholar

25. Kapica-Kozar, J., Pirog, E., Wrobel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mater. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.10.1016/j.micromeso.2016.05.024Search in Google Scholar

26. Kapica-Kozar, J., Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Wrobel, R.J. Mozia, S. & Morawski, A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mater. 202, 241–249, DOI: 10.1016/j.micromeso.2014.10.013.10.1016/j.micromeso.2014.10.013Search in Google Scholar

27. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wrobel, R. J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. DOI: 10.1039/c6nj02808.Search in Google Scholar

28. Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazábal, G.O. & Pérez-Ramírez, J. (2013). Status and perspectives of CO2 conversion into fuels and chemicals bycatalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135. DOI: 10.1039/C3EE41272E.10.1039/c3ee41272eSearch in Google Scholar

29. Marcinkowski, D., Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G. & Michalkiewicz, B. (2014). A new polymeric complex of silver(I) with a hybrid pyrazine-bipyridine ligand - synthesis, crystal structure and its photocatalytic activity. New J. Chem. 38, 604–610. DOI: 10.1039/c3nj01187a.10.1039/C3NJ01187ASearch in Google Scholar

30. Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G., Przepiorski, J. & Michalkiewicz, B. (2012). Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 291, 1–8. DOI: 10.1016/j.jcat.2012.03.025.10.1016/j.jcat.2012.03.025Search in Google Scholar

31. Dhakshinamoorthy, A., Navalon, S., Corma, A. & Garcia, H. (2012). Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 5, 9217–9233. DOI: 10.1039/C2EE21948D.10.1039/c2ee21948dSearch in Google Scholar

32. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A. W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Utiliz. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.10.1016/j.jcou.2013.12.004Search in Google Scholar

33. Yuan, L. & Xu, Y.J. (2015). Photocatalytic conversion of CO2 into value-added andrenewable fuels. Appl. Surf. Sci. 342, 154–167. DOI: 10.1016/j.apsusc.2015.03.050.10.1016/j.apsusc.2015.03.050Search in Google Scholar

34. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.10.1016/j.energy.2014.08.016Search in Google Scholar

35. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mater. 22, 635–646. DOI: 10.1007/s10934-015-9936-6.10.1007/s10934-015-9936-6Search in Google Scholar

36. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kalenczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrogen Energ. 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.10.1016/j.ijhydene.2013.10.008Search in Google Scholar

37. Zielinska, B., Michalkiewicz, B., Mijowska, E. & Kalenczuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Res. Lett. 10, 430. DOI: 10.1186/s11671-015-1113-y.10.1186/s11671-015-1113-y462797026518029Search in Google Scholar

38. Zielinska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kalenczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. Chem. Phys. Lett. 647, 14–19. DOI: 10.1016/j.cplett.2016.01.036.10.1016/j.cplett.2016.01.036Search in Google Scholar

39. Singh, V.K. & Kumar, E.A. (2016). Measurement and analysis of adsorption isotherms of CO2 on activated carbon. App. Therm. Eng. 97, 77–86. DOI: 10.1016/j.applthermaleng.2015.10.052.10.1016/j.applthermaleng.2015.10.052Search in Google Scholar

40. Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.10.1016/j.indcrop.2013.03.004Search in Google Scholar

41. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A-Gen. 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.10.1016/j.apcata.2004.09.005Search in Google Scholar

42. Michalkiewicz, B., Srenscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4Search in Google Scholar

43. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. 59, 403–408.Search in Google Scholar

44. Michalkiewicz, B., Srenscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6Search in Google Scholar

45. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.10.2478/s11696-008-0100-5Search in Google Scholar

46. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b10.1023/B:KICA.0000009057.79026.0bSearch in Google Scholar

47. Jarosinska, M., Lubkowski, K., Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.10.1007/s10562-008-9645-8Search in Google Scholar

48. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal. A-Gen. 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.10.1016/j.apcata.2006.04.006Search in Google Scholar

49. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.10.1016/j.cej.2009.03.046Search in Google Scholar

50. Michalkiewicz, B, Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-XSearch in Google Scholar

51. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.10.1016/j.apcata.2011.01.014Search in Google Scholar

52. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14, 19–21. DOI: 10.2478/v10026-012-0096-z.10.2478/v10026-012-0096-zSearch in Google Scholar

53. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21. DOI: 10.1088/0957-4484/21/14/145308.10.1088/0957-4484/21/14/145308Search in Google Scholar

54. Ziebro, J., Skorupinska, B., Kadziolka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Full. Nanot. Carbon Nanost. 21, 333–345. DOI: 10.1080/1536383X.2011.613543.10.1080/1536383X.2011.613543Search in Google Scholar

55. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.10.1016/S1872-5805(14)60129-3Search in Google Scholar

56. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.10.1007/s00339-013-7698-zSearch in Google Scholar

57. Ziebro, J., Lukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy. Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.10.1016/j.jallcom.2009.06.039Search in Google Scholar

58. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A. 129, 153–157. DOI: 10.12693/APhysPolA.129.153.10.12693/APhysPolA.129.153Search in Google Scholar

59. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst. Int. J. Hydrogen Energ. 41, 8668–8678. DOI: 10.1016/j.ijhydene.2016.01.097.10.1016/j.ijhydene.2016.01.097Search in Google Scholar

60. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B. & Ruppert, A.M. (2016). Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. Int. J. Hydrogen Energ. 41, 8656–8667. DOI: 10.1016/j.ijhydene.2015.12.146.10.1016/j.ijhydene.2015.12.146Search in Google Scholar

61. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energ. 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.10.1016/j.ijhydene.2013.10.149Search in Google Scholar

62. Deng, B.S., Hu, Y.B., Chen, T., Wang, B., Huang, J., Wang, J.Y. & Yu, G. (2015). Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption. 21, 125–133. DOI: 10.1007/s10450-015-9655-y.10.1007/s10450-015-9655-ySearch in Google Scholar

63. Montagnaro, F., Silvestre-Albero, A., Silvestre-Albero, J., Rodríguez-Reinoso, F., Erto, A., Lancia, A. & Balsamo, M. (2015). Post-combustion CO2 adsorption on activated carbons with different textural properties. Microp. Mesop. Mat. 209, 157–164. DOI: 10.1016/j.micromeso.2014.09.037.10.1016/j.micromeso.2014.09.037Search in Google Scholar

64. Díez, N., Álvarez, P., Granda, M., Blanco, C., Santamaría, R. & Menéndez, R. (2015). CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods. Chem. Eng. J. 281, 704–712. DOI: 10.1016/j.cej.2015.06.126.10.1016/j.cej.2015.06.126Search in Google Scholar

65. Ludwinowicz, J. & Jaroniec, M. (2015). Effect of activating agents on the development of microporosity in polymeric-based carbon for CO2 adsorption. Carbon 94, 673–679. DOI: 10.1016/j.carbon.2015.07.052.10.1016/j.carbon.2015.07.052Search in Google Scholar

66. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption. DOI: 10.1007/s10450-017-9867-4.10.1007/s10450-017-9867-4Search in Google Scholar

67. Przepiórski, J., Czyżewski, A., Kapica, J., Moszyński, D., Grzmil, B., Tryba, B., Mozia, S. & Morawski, A.W. (2012). Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem. Eng. J. 191, 147–153. DOI: 10.1016/j.cej.2012.02.087.10.1016/j.cej.2012.02.087Search in Google Scholar

68. Czyżewski, A., Kapica, J., Moszyński, D., Pietrzak, R. & Przepiórski, J. (2013). On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem. Eng. J. 226, 348–356. DOI: DOI: 10.1016/j.cej.2013.04.061.10.1016/j.cej.2013.04.061Search in Google Scholar

69. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. J. Adv. Oxid. Technol. 17, 44–52. DOI: 10.1515/jaots-2014-0106.10.1515/jaots-2014-0106Search in Google Scholar

70. Wróblewska, A. (2014). The Epoxidation of Limonene over the TS-1 and Ti-SBA-15 Catalysts. Molecules 19, 19907–19922. DOI: 10.3390/molecules191219907.10.3390/molecules191219907627093325460313Search in Google Scholar

71. Wróblewska, A., Ławro, E. & Milchert, E. (2006). Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Ind. Eng. Chem. Res. 45, 7365–7373. DOI: 10.1021/ie0514556.10.1021/ie0514556Search in Google Scholar

72. Wróblewska, A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal. A. 309, 192–200. DOI: 10.1016/j.apcata.2006.05.004.10.1016/j.apcata.2006.05.004Search in Google Scholar

73. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.10.1016/j.cattod.2015.11.010Search in Google Scholar

74. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.10.1007/s10562-016-1910-7Search in Google Scholar

75. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2016). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. DOI: 10.1515/gps-2016-0148.10.1515/gps-2016-0148Search in Google Scholar

76. Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J. Hazard. Mater. 167(1), 1–9. DOI: 10.1016/j.jhazmat.2008.12.114.10.1016/j.jhazmat.2008.12.114Search in Google Scholar

77. Dias, J.M., Alvim-Ferraz, M.C., Almeida, M.F., Rivera-Utrilla, J. & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85(4), 833–846. DOI: 10.1016/j.jenvman.2007.07.031.10.1016/j.jenvman.2007.07.031Search in Google Scholar

78. Ello, A.S., Souza, L.K.C., Trokourey, A. & Jaroniec, M. (2013). Coconut shell-based microporous carbons for CO2 capture. Micropor. Mesopor. Mater. 180, 280–283. 10.1016/j.micromeso.2013.07.008.10.1016/j.micromeso.2013.07.008Search in Google Scholar

79. Spahisa, N., Addoun, A., Mahmoudi, H. & Ghaffour, N. (2008). Purification of water by activated carbon prepared from olive stones. Desalination 222, 519–527. DOI: 10.1016/j.desal.0000.00.000.Search in Google Scholar

80. Wang, J., Heerwig, A., Lohe, M.R., Oschatz, M., Borchardt, L. & Kaskel, S. (2012). Fungi-based porous carbons for CO2 adsorption and separation. J. Mater. Chem. 22, 13911–13913. DOI: 10.1039/C2JM32139D.10.1039/c2jm32139dSearch in Google Scholar

81. Pendyal, B., Johns, M.M., Marshall, W.E., Ahmenda, M. & Rao, R.M. (1999). The effect of binders and agricultural by-products on physical and chemical properties of granular activated carbons. Biores. Technol. 68, 247–254. DOI: 10.1016/S0960-8524(98)00153-9.10.1016/S0960-8524(98)00153-9Search in Google Scholar

82. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Coll. Inter. Sci. 486, 277–286. DOI: 10.1016/j.jcis.2016.10.003.10.1016/j.jcis.2016.10.00327721076Search in Google Scholar

83. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. J. Coll. Inter. Sci. 427, 47–52. DOI: 10.1016/j.colsurfa.2013.03.002.10.1016/j.colsurfa.2013.03.002Search in Google Scholar

84. Kwiatkowski, M. & Broniek, E. (2012). Application of the LBET class adsorption models to analyze influence of production process conditions on the obtained microporous structure of activated carbons. Coll. Surf. A: Physicochem. Eng. Aspects 411, 105–110. DOI: 10.1016/j.colsurfa.2012.06.046.10.1016/j.colsurfa.2012.06.046Search in Google Scholar

85. Grycová, B., Koutník, I. & Pryszcz, A. (2016). Pyrolysis process for the treatment of food waste. Biores. Technol. 218, 1203–1207. DOI: 10.1016/j.biortech.2016.07.064.10.1016/j.biortech.2016.07.06427474954Search in Google Scholar

86. Grycova, B., Koutnik, I., Pryszcz, A. & Kaloc, M. (2016). Application of pyrolysis process in processing of mixed food wastes. Pol. J. Chem. Technol. 18(1), 19–23. DOI: 10.1515/pjct-2016-0004.10.1515/pjct-2016-0004Search in Google Scholar

87. Presser, V., McDonough, J., Yeon, S.H. & Gogotsi, Y. (2011). Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4, 3059–3066. DOI: 10.1039/C1EE01176F.10.1039/c1ee01176fSearch in Google Scholar

88. Deng, Sh., Wei, H., Chen, T., Wang, B., Huang, J. & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures, Chem. Eng. J. 253, 46–54. DOI: 10.1016/j.cej.2014.04.115.10.1016/j.cej.2014.04.115Search in Google Scholar

89. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.10.1016/j.jcou.2017.01.006Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering