Accesso libero

Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Mungroo, R., Pradhan, N.C., Goud, V.V. & Dalai, A.K. (2008). Epoxidation of Canola Oil with Hydrogen Peroxide Catalyzed by Acidic Ion Exchange Resin. J. Am. Oil Chem. Soc. 85(9), 887-896. DOI: 10.1007/s11746-008-1277-z.10.1007/s11746-008-1277-zSearch in Google Scholar

2. Güner, F.S., Yağci, Y. & Erciyes, A.T. (2006). Polymers from Triglyceride oils. Prog. Polym. Sci. 31, 633-670. DOI: 10.1016/j.progpolymsci.2006.07.001.10.1016/j.progpolymsci.2006.07.001Search in Google Scholar

3. Alam, M., Akram, D., Sharmin, E., Zafar, F. & Ahmad, S. (2014). Vegetable oil based eco-friendly coating materials: A review article. Arab. J. Chem. 7, 469-479. DOI: 10.1016/j. arabjc.2013.12.023.Search in Google Scholar

4. Dinda, A., Patwarthan, A.V., Goud, V.V. & Pradhan, N.N. (2008). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour. Technol. 99, 3737-3744.10.1016/j.biortech.2007.07.015Search in Google Scholar

5. Milchert, E., Malarczyk, K. & Kłos, M. (2015). Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review. Molecules 20(12), 21481-21493.10.3390/molecules201219778Search in Google Scholar

6. Rios, L.A., Weckes, P., Schuster, H. & Hoelderich, W.F. (2005). Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils. J Catal. J. Catal. 232(1), 19-26. DOI: 10.1016/j.jcat.2005.02.011.10.1016/j.jcat.2005.02.011Search in Google Scholar

7. Benaniba, M.T., Belhaneche-Bensemra, N. & Gelbard, G. (2003). Stabilization of PVC by epoxidized sunfl ower oil in the presence of zinc and calcium stearates. Polym. Degrad. Stabil. 82(2), 245-249. DOI: 10.1016/S0141-3910(03)00178-2.10.1016/S0141-3910(03)00178-2Search in Google Scholar

8. Saurabh, T., Patnaik, M., Bhagt, S.L. & Renge, V.C. (2011). Epoxidation Of Vegetable Oils: A Review. Int. J. Adv. Eng. Technol. 2(4), 491-501.Search in Google Scholar

9. Metzger, J.O. & Bornscheuer, U. (2006). Lipids as renewable resources: current state of chemical and biotechnological conversion and diversifi cation. Appl. Microbiol. Biotechnol. 71(1), 13-22. DOI: 10.1007/s00253-006-0335-4.10.1007/s00253-006-0335-416604360Search in Google Scholar

10. Piazza, G.J. & Foglia, T.A. (2005). Preparation of fatty amide polyols via epoxidation of vegetable oil amides by oat seed peroxygenase. J. Am. Oil Chem. Soc. 82(7), 481-485. DOI: 10.1007/s11746-005-1097-y.10.1007/s11746-005-1097-ySearch in Google Scholar

11. Gurbanov, M.S., Chalabiev, Ch.A., Mamedov, B.A. & Efendiev, A.A. (2005). Epoxidation of soybean oil in the course of cooxidation with hydrogen peroxide in the presence of propanoic acid and chlorinated KU-2 8 cation exchanger. Russ. J. Appl. Chem. 78, 1678-1681.10.1007/s11167-005-0585-4Search in Google Scholar

12. Carlson, K.D. & Chang, S.P. (1985). Chemical epoxidation of a natural unsaturated epoxy seed oil fromVernonia galamensis and a look at epoxy oil markets. J. Am. Oil Chem. Soc. 62(5), 934-939. DOI: 10.1007/BF02541763.10.1007/BF02541763Search in Google Scholar

13. Hang, X. & Yang, H. (1999). Model for Cascade Continuous Epoxidation Process. J. Am. Oil Chem. Soc. 76, 89-92. DOI: 10.1007/s11746-999-0052-0.10.1007/s11746-999-0052-0Search in Google Scholar

14. Lathi, P.S. & Mattiasson, B. (2007). Green approach for the preparation of biodegradable lubricant basestock from epoxidized vegetable oil. Appl. Catal. Envrion. 69, 207-212.10.1016/j.apcatb.2006.06.016Search in Google Scholar

15. Salimon, J., Abdullah, B.M., Yusop, R.M. & Salih, N. (2014). Synthesis, reactivity and application studies for different biolubricants Chem. Cent. J. 8(16), 1-11. DOI: 10.1186/1752-153X-8-16.10.1186/1752-153X-8-16Search in Google Scholar

16. Biswas, A., Adhvaryu, A., Gordon, S.H., Erhan S.Z. & Willett, J.L. (2005). Synthesis of Diethylamine-Functionalized Soybean Oil. J. Agric. Food Chem. 53(24), 9485-9490. DOI: 10.1021/jf050731o.10.1021/jf050731oSearch in Google Scholar

17. Chlebicki, J. & Matyschok, H. (2005). Synteza i epoksydowanie estrów etylowych nienasyconych kwasów tłuszczowych oraz ich wykorzystanie w produkcji związków powierzchniowo czynnych. Przem. Chem. 84(12), 933-938.Search in Google Scholar

18. Ligadas, G., Ronda, J.C., Galia, M. & Cadiz, V. (2010). Plant oils as platform chemicals for polyurethane synthesis:current state-of-the-art. Biomacromolecules 11(11), 2825-2835. DOI: 10.1021/bm100839x.10.1021/bm100839xSearch in Google Scholar

19. Zhang, Ch., Madbouly, S.A. & Kessler, M.R. (2015). Biobased polyurethanes prepared from different vegetable oils. Appl. Math. Interfaces 7(2), 1226-1233. DOI: 10.1021/ am5071333.10.1021/am5071333Search in Google Scholar

20. Roth, M., Tang, Q., Malherbe, R. & Schoenenberger, C. (2001). U.S. Patent No. 6,194,490 B1. Brewster, NY (US): Vantico, Inc.Search in Google Scholar

21. Thames, S.F. & Yu, H. (1999). Cationic UV-cured coatings of epoxide-containing vegetable oils. Surf. Coat. Tech. 115(2), 208-214. DOI: 10.1016/S0257-8972(99)00244-3.10.1016/S0257-8972(99)00244-3Search in Google Scholar

22. Rüsch gen Klaas, M. & Warwel, S. (1999). Complete and partial epoxidation of plant oil by lipase-catalysed perhydrolysis. Ind. Crop. Prod. 9(2), 125-132. DOI: 10.1016/S0926-6690(98)00023-5.10.1016/S0926-6690(98)00023-5Search in Google Scholar

23. Mc Kenna, A.L., Fatty amides, synthesis, properties, reactions and applications. Witco Chemical Corporation, Humko Chemical. Division, Memphis, 1982, 111-194.Search in Google Scholar

24. Goud, V.V., Patwardhan, A.V., Dinda, S. & Pradhan, N.C. (2007). Epoxidation of karanja (Pongamia glabra) oil catalysed by acidic ion exchange resin. Eur. J. Lipid Sci. Technol. 109, 575-584. DOI: 10.1002/ejlt.200600298.10.1002/ejlt.200600298Search in Google Scholar

25. Goud, V.V., Patwardhan, A.V., Dinda, S. & Pradhan, N.C. (2007). Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chem. Eng. Sci. 62(15), 4065-4076. DOI: 10.1016/j.ces.2007.04.038.10.1016/j.ces.2007.04.038Search in Google Scholar

26. Milchert, E. & Smagowicz, A. (2009). The Infl uence of Reaction Parameters on the Epoxidation of Rapeseed Oil with Peracetic Acid. J. Am. Oil Chem. Soc. 86, 1227-1233. DOI: 10.1007/s11746-009-1455-7.10.1007/s11746-009-1455-7Search in Google Scholar

27. Goud, V.V., Patwardhan, A.V. & Pradhan, N.C. (2006). Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Biores. Technol. 97(12), 1365-1371. DOI: 10.1016/j.biortech.2005.07.004.10.1016/j.biortech.2005.07.00416122922Search in Google Scholar

28. Schmitz, W.R. & Wallace, J.G. (1954). Epoxidation of methyl oleate with hydrogen peroxide. J. Am. Oil Chem. Soc. 31(9), 363-365. DOI: 10.1007/BF02545510.10.1007/BF02545510Search in Google Scholar

29. Matyschok, H. & Chlebicki, J. (2001). Synthesis and epoxidation of methyl esters of unsaturated fatty acids. Pol. J. Appl. Chem. 45(1-2), 13-23.Search in Google Scholar

30. Milchert, E. & Kłos, M. (2013). Epoksydacja zużytych olejów roślinnych kwasem nadoctowym. Przem. Chem. 92, 670-674.Search in Google Scholar

31. Gurbanov, M.S. & Mamedov, M.A. (2009). Epoxidation of fl ax oil with hydrogen peroxide in a conjugate system in the presence of acetic acid and chlorinated cation exchanger KU-2×8 as catalyst. Russ. J. Appl. Chem. 82(8), 1483-1487.10.1134/S1070427209080308Search in Google Scholar

32. Milchert, E., Smagowicz, A. & Lewandowski, G. (2010). Optimization of the Epoxidation of Rapeseed Oil with Peracetic Acid. Org. Proc. Res. Dev. 14, 1094-1101. DOI: 10.1021/ op900240p.10.1021/op900240pSearch in Google Scholar

33. Zheng, J.L., Wärnå, J., Salmi, T., Burel, F., Taouk, B. & Leveneur, S. (2016). Kinetic modeling strategy for an exothermic multiphase reactor system: Application to vegetable oils epoxidation using Prileschajew method. AIChE Journal 62(3), 726-741. DOI: 10.1002/aic.15037.10.1002/aic.15037Search in Google Scholar

34. Leveneur, S., Zheng, J., Taouk, B., Burel, F., Wärnå, J. & Salmi, T. (2014). Interaction of thermal and kinetic parameters for a liquid-liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid. J. Taiwan Inst. Chem. E. 45, 1449-1458. DOI: 10.1016/j.jtice.2014.01.015.10.1016/j.jtice.2014.01.015Search in Google Scholar

35. Goud, V.V., Patwardhan, A.V. & Pradhan, N.C. (2006). Epoxidation of Karanja (Pongamia glabra) Oil by H2O2. J. Am. Oil Chem. Soc. 83(7), 635-640. DOI: 10.1007/s11746-006-1250-7.10.1007/s11746-006-1250-7Search in Google Scholar

36. Goud, V.V., Patwardhan, A.V. & Pradhan, N.C. (2007). Kinetics of in situ Epoxidation of Natural Unsaturated Triglycerides Catalyzed by Acidic Ion Exchange Resin. Ind. Eng. Chem. Res. 46(10), 3078-3085. DOI: 10.1021/ie060146s.10.1021/ie060146sSearch in Google Scholar

37. Campanella, A. & Baltanás, M.A. (2006). Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid heterogeneous reaction systems. Chem. Eng. J. 118(3), 141-152. DOI: 10.1016/j.cej.2006.01.010.10.1016/j.cej.2006.01.010Search in Google Scholar

38. Petrović, Z.S., Zlatanić, A., Lava, C.C. & Sinadinović- Fišer, S. (2002). Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids - kinetics and side reactions. Eur. J. Lipid Sci. Technol. 104(5), 293-299. DOI: 10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W.10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-WSearch in Google Scholar

39. Rangarajan, B., Havey, A., Grulke, E.A. & Culnan, P.D. (1995). Kinetic parameters of a two-phase model forin situ epoxidation of soybean oil. J. Am. Oil Chem. Soc. 72(10), 1161-1169. DOI: 10.1007/BF02540983.10.1007/BF02540983Search in Google Scholar

40. Doll, K.M., Bantchev, G.B. & Murray, R.E. Bismuth, (2013). Bismuth(III) Trifl uoromethanesulfonate Catalyzed Ring-Opening Reaction of Mono Epoxy Oleochemicals To Form Keto and Diketo Derivatives. ACS Sust. Chem. Eng. 1, 39-45. DOI: 10.1021/sc300092r.10.1021/sc300092rSearch in Google Scholar

41. Carlson, K.D., Kleiman, R. & Bagby, M.O. (1994). Epoxidation of Lesquerella and Limnanthes (Meadowfoam) Oils. J. Am. Oil Chem. Soc. 71(2), 175-182. DOI: 10.1007/BF02541553.10.1007/BF02541553Search in Google Scholar

42. Sinadinović-Fišer, S., Janković, M. & Petrović, Z.S. (2001). Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. J. Am. Oil Chem. Soc. 78(7), 725-731. DOI: 10.1007/s11746-001-0333-9.10.1007/s11746-001-0333-9Search in Google Scholar

43. Jourdan-Laforte, E. (1980). U.S. Patent No. 4,215,058 A. Paris: L’Air Liquide, Societe Anonyme pourl’Etude et l’Exploitation des Brevets Georges Claude.Search in Google Scholar

44. Janković, M.R., Sinadinović-Fišer, S.V. & Govedarica, O.M. (2014). Kinetics of the Epoxidation of Castor Oil with Peracetic Acid Formed in Situ in the Presence of an Ion- -Exchange Resin. Ind. Eng. Chem. Res. 53(22), 9357-9364. DOI: 10.1021/ie500876a.10.1021/ie500876aSearch in Google Scholar

45. Dinda, S., Goud, V.V., Patwardhan, A.V. & Pradhan, N.C. (2011). Selective epoxidation of natural triglycerides using acidic ion exchange resin as catalyst. Asia-Pacific J. Chem. Eng. 6(6), 870-878. DOI: 10.1002/apj.466.10.1002/apj.466Search in Google Scholar

46. Sinadinović-Fišer, S., Janković, M. & Borota, O. (2012). Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem. Eng. Proc. 62, 106-113. DOI: 10.1016/j.cep.2012.08.005.10.1016/j.cep.2012.08.005Search in Google Scholar

47. Nowak, J. A., Zillner, T.A. & Mullin, L.P. (2004). U.S. Patent No. 6,734,315 B1. Chicago: The C.P. Hall Company Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering